當前位置:濟南賽暢科學儀器有限公司>>氣相色譜儀>>專用氣相色譜儀>> 農藥及除草劑檢測氣相色譜儀
農藥及除草劑檢測氣相色譜儀
濟南賽暢科學儀器有限公司座落于歷史悠久的文化名城-泉城濟南,是一家專業經營進口、國產氣相色譜、液相色譜、原子吸收、電子天平、純水機、電化學儀器等實驗室分析儀器設備、通用儀器設備及配件耗材的高科技公司。公司創立伊始,即堅持立足分析領域行業,致力于將*的分析儀器介紹給廣大國內用戶,目前公司用戶已經遍布科研機構、大專院校、、化工、食品、、農業、工礦、電力、冶金等行業和單位。
農藥及除草劑檢測氣相色譜儀
農藥是當前農業生產用于防治病、蟲、雜草對農作物危害*的物質,對促進農業增產有極重要的作用。隨著農業科學技術的發展,化學農藥的品種和數量不斷增加,已成為防治病蟲害的主要手段。農藥施用到農作物上以后,絕大部分因多種原因而轉化,但作物內會殘留有極少量的農藥。長時間攝食殘留農藥會影響人體的健康,這就是農藥殘留量問題的由來。近年來,在茶葉、糧谷、蔬菜及水果種植中由于不少農戶忽視農藥的正確、合理使用,農藥污染問題經常發生,農藥殘留量超標相當嚴重,并逐年加劇。而歐盟、美國、日本、加拿大等西方發達國家或地區,出于維護本國經濟利益和保護人們健康的需要,相繼對進口食品中農藥殘留量等衛生指標提出了愈來愈嚴格的要求。鑒于此,為保障我國人民的身體健康、有效控制農藥在茶葉、糧谷、蔬菜和水果等生產中的合理使用和對其殘留量進行監控,滿足進出口貿易的需要,大力開展農藥殘留量檢測技術以及相關的前處理技術的研究是非常必要的。
化學農藥是一類復雜的有機化合物,根據其用途可以分為殺蟲劑、殺菌劑、除草劑、植物生長調節劑、殺螨劑、殺鼠劑、殺線蟲劑。根據化學結構又可分為有機氯、有機磷、擬除蟲菊酯殺蟲劑,取代氯苯氧基酸或酯除草劑,氨基甲酸酯殺蟲劑、除草劑和殺菌劑和有機雜環類殺菌劑、除草劑等。農藥殘留量分析需要測定各種樣品中ug/g、ng/g、甚至pg/g量級的農藥和/或代謝產物及降解產物。其分析過程一般包括取樣、樣品處理(提取、凈化和衍生化)和測量,根據農藥種類和樣品基質的不同,上述各個步驟的復雜性有所不同。色譜方法常用于樣品的凈化和測量,以前較多采用填充柱氣相色譜法(GC),現在則越來越多地使用毛細管氣相色譜法(GC)和高效液相色譜法(HPLC),尤其在定性分析的氣相色譜/質譜法(GC/MS) 中,毛細管柱技術占優勢。電子捕獲檢測器(ECD)、火焰光度檢測器(FPD)、氮磷檢測器(NPD)是zui常用的農藥殘留量分析的氣相色譜檢測器,質譜檢測器(MSD)則是zui通用和靈敏的檢測器。各種進樣方式,如分流、不分流、冷柱上進樣技術和程序升溫汽化進樣技術都已應用于農藥殘留物分析。近年來,隨著農藥殘留研究的不斷深入,農藥殘留檢測方法日趨完善,并向簡單、快速、靈敏、多殘留、低成本、易推廣的方向發展。
在檢測技術方面,目前上已較多采用多殘留檢測技術和快速篩選檢測技術
傳統的農殘分析大多用來分析某一類農藥的單一成分,多殘留分析方法(Multi-Residue Analysis Method)不僅可以用于分析同一類農藥中的不同成分,而且可以分析不同種類農藥中的不同成分。前者稱為選擇性多殘留分析方法(Selective Multi-Residue Analysis Method),后者稱為多類多殘留分析方法(Multi-class,Multi-Residue Analysis Method)。這方面,如英國中央科學實驗室(CSL)開發了104種農藥殘留量同時檢測的方法;德國科學研究協會開發了320種農藥殘留的多殘留檢測方法;美國FDA農藥分析手冊(PAM)的多殘留方法可檢測300多種農藥;美國CDFA和荷蘭衛生部都有較好的多殘留同時檢測方法和系統分析方法。這些方法,既可用于定量,又可進行確證。我國從上世紀90年代初開始研究和利用多殘留分析方法,并相繼推出了一系列國家標準。如國家標準GB/T17331-1998食品中有機磷和氨基甲酸酯類農藥多種殘留的測定和GB/T17332-1998食品中有機氯和擬除蟲菊酯類農藥殘留的測定等,均可同時測定不同類型中的20多種農藥殘留。在我們的行業標準中SN/T0334-95多殘留檢測方法能同時檢測22種農藥殘留量,秦皇島局制定的《農產品中多種擬除蟲菊酯殘留量檢驗方法》已成為AOAC方法。在我局技術中心目前開發或采用的檢測茶葉、蔬菜等樣品中有機氯、有機磷、菊酯類農藥以及一些雜環類農藥的方法和本次研討會將要學習和討論的方法也大都是多殘留檢測方法。當然,我們現在的方法,在一次性檢測農藥的數量上和確證技術上與良好方法還存在不小的距離。
在快速篩選檢測技術方面,上個世紀六十年代就有人利用薄層色譜酶抑制法測定有機磷農藥等殘留量,檢測*為毫克級;八十年代開始,農藥的酶抑制和免疫檢測技術作為快速篩選檢測方法受到許多發達國家的高度重視,并因此得到了快速發展。酶抑制、酶聯免疫(ELISA)、放射免疫(RIA)、單克降抗體等技術由于可以避免假陰性,適宜于陽性率較低的大量樣品檢測,在農獸藥殘留檢測中應用日益增多。我國在近十多年來也相繼開展了農藥殘留酶抑制法和免疫法快速篩選檢測方法研究,取得了一定的研究成果,系統內有廣東檢驗檢疫局研制了農藥殘留速測卡,但總體上應用不多,方法的靈敏度不高,試劑不夠穩定。
在樣品前處理方面,現代色譜分析樣品制備技術的發展趨勢就是使處理樣品的過程要簡單、處理速度快、使用裝置要小、引進的誤差要小、對欲測定組分的選擇性和回收率要高
目前,上較多使用固相萃取(SPE)、微波提取技術、凝膠層析(GPC)、加速溶劑提取(ASE)、基體分散固相萃取(MSPD)、超臨界萃取(SFE)、固相微萃取技術。而我國目前主要采用傳統的溶劑萃取,液液分配,柱層析凈化,前處理方法自動化程度低、提取凈化的效率不高,速度慢,環境污染嚴重。新開發的前處理技術其目的和結果就是要實現快速、有效、簡單和自動化地完成分析樣品制備過程。
下面就農藥殘留檢測中采用的氣相色譜檢測技術和前處理技術的新發展向各位做一些簡單的介紹。
二、檢測技術
1、GC/MS 和GC/MS/MS技術
質譜技術問世于1910年。傳統的有四極質譜儀和飛行質譜儀。近年來又出現了串聯質譜儀(MS/MS)傅里葉變換離子回旋共振質譜儀等。目前,GC/MS的發展方向是小型化(即臺式GC/MS)、自動化(儀器調試、控制、數據處理)、高靈敏度和高穩定性。目前幾種常見的離子源有電子轟擊型離子源(EI)、化學電離源(CI源)、快原子轟擊電離源(FAB源)、解析化學電離源(DCI)、大氣壓電離源(API源)等。電子轟擊型離子源(EI)是有機質譜應用zui廣的常規型離子源;化學電離源(CI源)又稱軟電離技術,可獲得準分子離子峰,是EI源的一個補充;大氣壓電離源(API源)主要用作液相色譜-質譜聯用。
(1)GC/MS技術
氣相色譜測定農藥殘留的基本原理是根據保留時間來判定待測組分。往往因為樣品提取和凈化等原因,可能會出現許多雜質峰。如果待測組分在保留時間內有一種或多種雜質峰出現,就可能被認為是待測組分,造成誤判。GC/MS法不僅根據樣品中待測組分在圖譜上的保留時間,更主要是根據在此保留時間內殘留農藥裂解的特征離子碎片,由質譜儀按其分子量和分子結構對農藥準確定性,并以此作為定量的依據,從而克服了由于未凈化掉的雜質峰與農藥保留時間重疊而造成將雜質峰誤判為農藥的缺點。GC/MS技術在農藥殘留檢測中已有許多成功的應用實例,在此不多作介紹。但隨著農藥殘留*的進一步提高,以及樣品基質的影響,這種技術的應用也受到了一定的限制。大家切記,GC/MS方法的靈敏度不是由標準溶液的信噪比提供的,而是由樣品基質條件下的信噪比決定的。
(2)GC/MS/MS技術
比一級質譜具有優勢的是以離子阱為質量分析器的離子阱串聯質譜儀具有與大質譜相當的功能,可提高靈敏度,可對復雜基體中微量待測物進行測定,對一級質譜無法區分的化合物可進行進一步的確認,以及同分異構體的區分。在分析領域,離子阱串聯質譜已成為今后臺式小型GC/MS的發展方向之一。有機磷農藥在各種農作物和環境樣品中含量很低,目前利用GC/MS技術分析農作物和環境樣品中的農藥殘留量越來越普遍,因為它能給出化合物的結構信息,有利于化合物的定性。但因一般樣品中(如蔬菜、水果、茶葉等)的背景干擾較大,導致樣品預處理的周期較長,而且回收率較難保證。而MS/MS技術的應用,為復雜樣品中微量農藥的定性、定量分析提供了新的途徑。在分析韭菜中倍硫磷農藥時,分別采用EI全掃描和MS/MS分析,在MS/MS 分析條件下,倍硫磷的信噪比相對于EI全掃描時提高了100多倍。此外,利用MS/MS分析的另一大特點是可以將在色譜上不能*分開的共流出物利用時間編程和多通道檢測將其分開。
目前,GC/MS/MS已在環境分析、食品分析等方面得到廣泛的應用。該技術不僅適用于復雜基體混合物的定性分析,而且可以利用得到二級質譜結果進行定量。這是因為在兩個前后串聯的質譜/質譜儀中,前級質譜主要用于擔任分離工作,在樣品被電離后,它只允許被分析的目標化合物的母離子或特征離子碎片通過,經過碰撞裂解后,再由第二級質譜分析裂解后產生的離子碎片,利用MS/MS可以同時得到較低的檢測限和良好的結構鑒定信息(1個母離子和2個或更多的的子離子)。與氣相色譜檢測器相比,傳統的臺式質譜儀(GC/MS)因靈敏度較低,其使用受到限制。而據文獻報道,GC/MS/MS可在與傳統氣相色譜檢測器相似的靈敏度下進行定性定量分析。原因是MS/MS在對離子檢測前就排除了干擾,所以即使對復雜樣本也可達到很高的靈敏度。它不需要重復進樣就能定性,比選擇性檢測器有更高的可信性。在用傳統的質譜儀分析較“臟”的樣品時,因大量干擾的存在而不選擇低于100amu的離子。因為許多樣本的共存雜質含質量數低于100amu的離子;對檢測器造成嚴重干擾,使被測物的碎片離子無法檢出。在MS/MS中,子離子圖譜中只有來自母離子的碎片離子,因此,低質量離子不受干擾,對結構鑒定更加有用。例如,建立乙酰甲胺磷分析方法時,即使質量數低至M/Z42,該離子由于不受干擾仍可作為定量分析離子。檢測技術的發展已對殘留量分析提出了更高的要求,即雖然傳統中GC檢測器可進行痕量分析并達到較低的檢測限,但仍要求用MS作結構確證。因此任何實驗室測定殘留量的能力都會受到MS方法靈敏度的限制。選擇離子檢測(SIM)已被用于降低檢測限。但是,SIM所收集的離子信息并不如全掃描豐富,不能認為是一個等同的結構分析。在大多數情況下,MS/MS的靈敏度相當于或低于GC選擇性檢測器的下限,并可在此水平上進行定量分析和真實的分子結構確證。美國紐約州農業署食品實驗室已建立了一種用GC/MS/MS技術對水果、蔬菜和牛奶中100多種農藥殘留量進行檢測、定量和結構確證的方法。這一方法可對濃度范圍低至PPB水平的100多種農藥進行準確的檢測和鑒定。美國農業部的Beltsville農業研究中心利用GC/MS/MS技術分析了水果和蔬菜萃取物中22種農藥殘留物,得到良好的回收率和重現性,檢出限小于2ng/g。當然,當前GC/MS/MS方法的局限性在于僅能檢測目標分析物,很難一次進樣分析大量化合物。王煥龍等報道了茶葉中有機氯農藥殘留量的氣相色譜/串聯質譜分析的研究報告,采用氣相色譜串聯質譜儀(GC/MS/MS)同時檢測茶葉中51種有機氯農藥。茶葉樣品經二氯甲烷/水勻漿提取,用飽和氯化鈉溶液分離水溶性色素雜質,再以弗羅里硅土(硅酸鎂)固相萃取柱(SPE)凈化,zui后以GC/MS/MS檢測分析,得到清晰的MS/MS質譜圖,可去除茶葉背景值干擾,增加信噪比(S/N),適用于鑒定、確認分析極低濃度的定量分析。茶葉中色素相當多,樣品經弗羅里硅土固相萃取柱(SPE)凈化后,仍有色素雜質存在,會影響傳統的GC/ECD分析,測定結果經常需要進一步用GC/MS或GC/MS/MS做確證分析,如待測物濃度極低時,茶葉色素的背景值會干擾MS全掃描質譜圖做對比分析。而以GC/MS/MS進行分析時,分析物經*級MS電子轟擊后,選擇主要母離子或特征離子,以適當碰撞誘導解離(CID)能量做第二次MS電子轟擊,產生清晰的MS/MS質譜圖,大幅增加信噪比,可做低濃度確證分析。在該方法中,51種分析物可同時進入GC,通過非極性毛細管柱(如HP5-MS柱)分離,再進入MS做定性定量分析,其定量分析結果得到校正線性范圍為0.05~5.0ug/ml,檢測極限范圍為0.001~0.2ug/ml(依據不同分析物而定)。在0.25、0.75及2.5ug/g添加量回收率中,得到平均回收率為70~120%之間。在實際茶葉樣品試驗中,經GC/ECD檢測為陽性的樣品,以GC/MS/MS進行確證和定量分析,大部分樣品的GC/ECD分析值與GC/MS/MS分析結果*。但有少部分樣品,GC/ECD檢測為假陽性。
序號 | 產品名稱 | 產品規格 | 單位 | 數量 | 報價 |
1 | 氣相色譜儀 | GC9600FJ(程升+FID+SPL) | 臺 | 1.0 | 33600.00 |
2 | 電子捕獲檢測器 | GC9600-ECD | 臺 | 1.0 | 18000.00 |
3 | 色譜工作站 | N2000 (外置式,雙通道) | 套 | 1.0 | 4500.00 |
4 | 毛細管色譜柱 | DB-XLB 30 m x 0.32 mm,0.50 μm,123-1236 | 支 | 1.0 | 7260.00 |
5 | 毛細管色譜柱 | SE-54 30m×0.32mm,0.50um | 支 | 1.0 | 1470.00 |
6 | 空氣發生器 | HV-3 (3000ml/min) | 臺 | 1.0 | 3800.00 |
7 | 氫氣發生器 | SPE-300(300ml/min) | 臺 | 1.0 | 8000.00 |
8 | 氮氣減壓閥 | YQD-07 | 只 | 1.0 | 180.00 |
9 | 氮氣鋼瓶 | 40升(瓶+氣) | 瓶 | 1.0 | 850.00 |
10 | 氣相進樣墊 | GC9600 T型 | 只 | 100.0 | 2.00 |
11 | 標樣 | 按標準要求 | 套 | 1.0 | 1500.00 |
12 | 電子分析天平 | TP-214(210g-0.1mg) | 臺 | 1.0 | 9172.00 |
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,化工儀器網對此不承擔任何保證責任。
溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。