4. 可定制的直徑、高度、間距
18618101725
當前位置:世聯博研(北京)科技有限公司>>細胞牽引力分析系統>>4dcelll細胞牽引力分析系統>> 4dcell細胞收縮力微柱陣列
應用領域 | 醫療衛生,環保,生物產業 |
---|
細胞收縮力微柱陣列
高通量細胞收縮測試裝置
1、心肌細胞成熟度測定
功能性 iPSC 誘導的心肌細胞纖維
2、牽引力測定
細胞在基質上施加的力的量化
3、Durotaxis 和 haptotaxis 測定
控制基材剛度
4、3D CM 成熟度測定
評估 iPSC-CM 的跳動
5、單CM收縮力
單個心肌細胞搏動力的量化
一、細胞收縮力高通量檢測多孔板-24、96、384孔板:
圖1:原理圖:
1.1)細胞收縮力測試24孔板
1.2)細胞收縮力測試96孔板
1.3)細胞收縮力測試384孔板
細胞收縮力微柱陣列 牽引力微柱陣列
圖案的*微孔板,上面有100,000多個均勻分布的X或+形的具有粘性蛋白質微圖案,細胞沉降并附著在其上,嵌入板中的X具有彈性,因此每當細胞收縮時它們就會收縮。 X帶有分子標記,可以發出熒光,從而可以成像和量化縮小的形狀。
可以成像和定量,因此研究人員可以將X或十字架的變形與單個細胞或成千上萬個細胞的一定量的力相關聯。該技術還為研究人員提供了查看單個細胞鈣反應以及它們與細胞強度之間的關系的能力。
該技術也可以用于藥物發現。研究人員可以快速,輕松地測試不同的治療分子,以了解它們如何影響細胞力以及是否可以糾正任何潛在的力問題。
在具有可控剛度的彈性薄膜中嵌入用戶設計的粘合劑和熒光微圖案,形成非常密集但均勻的陣列(> 120微米/每平方毫米)。100000個患者來源的單細胞(地從疾病起源的人體組織中獲得)獨立地定位并粘附在微圖案上(每個微圖案一個細胞),它們對該微圖案施加牽引力并明顯改變其形狀,從而能夠在*的吞吐量下對細胞收縮性進行直觀的基于圖像的評估。
1)熒光彈性可收縮表面的微圖案化
—在具有可控剛度的彈性薄膜中嵌入用戶設計的粘合劑和熒光微圖案,形成非常密集但均勻的陣列(> 120微米/每平方毫米)。100000個患者來源的單細胞(地從疾病起源的人體組織中獲得)獨立地定位并粘附在微圖案上(每個微圖案一個細胞),它們對該微圖案施加牽引力并明顯改變其形狀,從而能夠在*的吞吐量下對細胞收縮性進行直觀的基于圖像的評估。
2)基于圖像的受控單細胞收縮性的動力學可視化
—例如,384孔板內的每個附著細胞的微圖案在延長的時間內以精細的時間分辨率被獨立監控,以直接觀察收縮行為的全部范圍,從緊張性收縮到誘導性收縮或松弛,以及任一效應的作用窗口。選擇“x"形微圖案以小化細胞-基底接觸面積,同時大化細胞擴散面積,從而在不同位置產生放大和集中的力。由于每個微圖案都與其他微圖案機械分離,粘附的細胞不會將應變傳遞給相鄰的微圖案,從而確保對群體中每個單個細胞的收縮力進行可靠的評估。
3)單細胞收縮性的自動化和直觀的圖像分析
—基于該方法的檢測產生直觀、明確的收縮信號——提供直接的圖像分析,以從成像群體中的每個單細胞獲得定量和可靠的數據。
可以同時獲取1000多個均勻圖案的單細胞的強大的收縮性數據,并與96-和384孔板格式無縫地集成,以促進大規模的藥物篩選
二、細胞牽引力顯微鏡及微柱陣列介紹
圖4:細胞牽引力顯微鏡
圖5:細胞微柱陣列,可定制剛度、大小、形狀和間距。
●PDMS微柱的偏轉可實現力感測
●PDMS微柱的剛度由其尺寸(Durotaxis)控制
●提供幾種微柱幾何形狀和布置
●單細胞力作圖(牽引力顯微鏡)
●可控的生物功能化
●適應任何細胞培養底物(從培養皿到96孔板)
●與高分辨率光學顯微鏡系統兼容
典型應用:
>單心肌細胞收縮力測定:定量單心肌細胞的搏動力
>牽引力測定:定量細胞在基質上施加的力
1、圓形PDMS微柱10 mm蓋玻片:
標準尺寸:24 mm圓形蓋玻片(約170μm厚度)
設計:直徑為5 ?m; 中心到中心的距離為7 ?m
三種高度可供選擇:2 ?m,6 ?m和12 ?m
3、方形微柱蓋玻片
設計:直徑7.5 ?m; 微柱之間的距離為20 ?m
三種高度可供選擇:2 ?m,6 ?m和12 ?m
4. 可定制的直徑、高度、間距
我們提供帶有微型PDMS微柱的10毫米蓋玻片,用于細胞培養和力評估。
不同的支柱設計和布置適合各種應用,例如牽引力顯微鏡,收縮力和旋轉軸。
通過測量PDMS微柱響應于細胞施加的力的撓度來進行力評估。
>多種設計可供選擇
可用高密度和低密度微柱以及不同縱橫比的基板。
>兼容高分辨率顯微鏡。
易于觀察細胞及其對微柱變形的影響
典型應用:
>單心肌細胞收縮力測定:定量單心肌細胞的搏動力
>牽引力測定:定量細胞在基質上施加的力
三維細胞培養的出現是為了解決二維細胞培養的局限性 。這些 3D 細胞培養物用于模仿天然細胞外基質 (ECM),這是一種高度水合的膠原蛋白和彈性纖維網絡,嵌入在糖胺聚糖、蛋白聚糖和糖蛋白的凝膠狀材料中 [5]。它們可以使用基質或支架形式的天然和合成材料制造,以更好地代表細胞環境的空間組織 ,許多細胞的行為都依賴于此,從而減少細胞培養物和原生生物環境。因此,3D 細胞培養已成為提高細胞研究相關性的重要手段 。
近幾十年來微流體技術的出現進一步擴大了我們改進細胞培養的能力,更地控制了局部細胞微環境 。微流體是一個涉及在微米級幾何形狀中操縱少量流體的領域,通常在基于硅的芯片上,它為細胞研究帶來了許多好處,例如對微環境進行更大的空間和時間控制 ,能夠使用更小的試劑體積,具有更短的反應時間 ,并且具有更大的細胞處理整合潛力 。微流控技術還產生了細胞限制潛力,由此可以使少量細胞甚至單個細胞發生機械變形 或簡單地隔離 ,
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,化工儀器網對此不承擔任何保證責任。
溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。