技術文章
Biomomentum多軸機械測試儀應用:聚合物凝膠的多峰表征
閱讀:410 發布時間:2021-3-18Biomomentum多軸機械測試儀Mach-1應用:聚合物凝膠的多峰表征,以確定測試方法對觀察到的彈性模量的影響
David M.Kingsley,Caitlin H.McCleery,Christopher DLJohnson,Michael TKBramson,Deniz Rende,Ryan J.Gilbert,David T.Corr
《生物醫學材料力學行為雜志》,于2019年1月10日在線提供,
機械復制天然組織的材料的需求推動了各種新型生物材料的開發和表征。然而,材料和表征技術多樣性的結果是在該領域內缺乏共識,沒有明確的方法來比較通過不同方式測量的值。這可能導致難以在整個研究團體中復制研究結果;近的證據表明,不同的模態不會在材料中產生相同的機械測量值,并且無法在不同的測試平臺之間進行直接比較。在此,我們通過分析由五種典型生物材料機械表征技術確定的彈性模量來檢查“材料特性”是否特定于表征模態:無限制壓縮,張力測定,流變測定,和微觀壓痕的宏觀層面,并在微觀上使用納米壓痕。這些分析是在兩種通常用于生物學應用的不同聚合物凝膠中進行的,分別是聚二甲基硅氧烷(PDMS)和瓊脂糖。每個組件的制造都涵蓋了從生理值到超生理值的一系列模量。所有這五種技術在每個材料組中都確定了相同的總體趨勢,
壓縮測試
使用4毫米活檢穿孔器從制備的凝膠上沖出圓柱狀試樣,以近似于ASTM標準D575-91規定的樣品幾何形狀(直徑4毫米,厚度2毫米)的比率。根據配備的70-N或1.5-N稱重傳感器,在配備了70-N或1.5-N稱重傳感器的Mach-1機械測試儀(Biomomentum Inc.,Laval,QC,加拿大)上對樣品進行表征。將每個試樣以0.03 mm / s的恒定速率壓縮至大約0.50應變(壓縮距離為1.125 mm)。根據測得的力和位移數據(分別歸一化為初始樣品的橫截面面積和長度)構建應力-應變曲線。彈性模量是根據該曲線的線性區域估算的,對于PDMS,線性應變介于0.05-0.25應變之間,而對于瓊脂糖則介于0-0.10應變之間。
壓痕測試
使用帶有球形端探針(直徑為6.35 mm)的Mach-1機械測試儀(Biomomentum Inc.,Laval,QC,加拿大)對90 mm培養皿中的樣品進行壓痕表征。根據樣品的剛性,所有樣品均使用1.5 N或70 N的稱重傳感器。為了進行表征,先將探針高度校準至不含凝膠的培養皿中,以標準化探針的高度。凝膠測試從系統的“查找接觸”模式開始,其中探針以0.03 mm / s的速度下降,直到檢測到負載為止。基于確定的初始樣品高度,將測試設置為總探針位移為30%應變,所有樣品的恒定速率為0.03 mm / s。壓痕數據的彈性模量是使用Hertzian模型估算的,這說明了球體與彈性固體之間的接觸力學[12,13]。為了利用赫茲模型,將測得的壓頭力與壓痕深度,
,其中,F是檢測到的力,R是壓頭的半徑,d是位移,而?是 是樣本的泊松比。制作了三個獨立的凝膠,用于每個樣品條件的測試,每個凝膠有六個壓痕(n = 18)。
Multi-modal characterization of polymeric gels to determine the influence of testing method on observed elastic modulus
David M. Kingsley, Caitlin H.McCleery, Christopher D.L.Johnson, Michael T.K.Bramson, Deniz Rende, Ryan J.Gilbert, David T.Corr
Journal of the Mechanical Behavior of Biomedical Materials, available online 10 January 2019,
Demand for materials that mechanically replicate native tissue has driven development and characterization of various new biomaterials. However, a consequence of materials and characterization technique diversity is a lack of consensus within the field, with no clear way to compare values measured via different modalities. This likely contributes to the difficulty in replicating findings across the research community; recent evidence suggests that different modalities do not yield the same mechanical measurements within a material, and direct comparisons cannot be made across different testing platforms. Herein, we examine whether “material properties” are characterization modality-specific by analyzing the elastic moduli determined by five typical biomaterial mechanical characterization techniques: unconfined-compression, tensiometry, rheometry, and micro-indentation at the macroscopic level, and microscopically using nanoindentation. These analyses were performed in two different polymeric gels frequently used for biological applications, polydimethylsiloxane (PDMS) and agarose. Each was fabricated to span a range of moduli, from physiologic to supraphysiologic values. All five techniques identified the same overall trend within each material group, supporting their ability to appreciate relative moduli differences. However, significant differences were found across modalities, illustrating a difference in absolute moduli values, and thereby precluding direct comparison of measurements from different characterization modalities. These observed differences may depend on material compliance, viscoelasticity, and microstructure. While determining the underlying mechanism(s) of these differences was beyond the scope of this work, these results demonstrate how each modality affects the measured moduli of the same material, and the sensitivity of each modality to changes in sample material composition.
Compression testing
Cylindrical test specimens were punched from the prepared gels, using a 4-mm biopsy punch, to approximate the ratio of sample geometries (4-mm diameter, 2-mm thickness) specified by ASTM standard D575-91. Samples were characterized on a Mach-1 mechanical tester (Biomomentum Inc., Laval, QC, Canada) equipped with either a 70-N or 1.5-N load cell, depending on sample rigidity. Each test specimen was compressed to approximately 0.50 strain (absolute compression distance of 1.125 mm) at a constant rate of 0.03 mm/s.
Indentation testing
biomomentum多軸機械測試儀Mach-1
Mach-1多軸機械測試儀是模塊化集成壓縮,拉伸,剪切,摩擦,扭轉和3D壓痕映射、電位分布等測試設備
biomomentum至1999年以來,專注用于測試生物材料,組織和關節軟骨機-電特性產品的設計、開發、制造和商業化的創新解決方案20余年。
其mach-1多軸向多功能組織材料機械特性測試分析系統已經成為組織材料機械-電位測試分析的黃金標準。
1、多功能、多軸向,適用樣品范圍廣:
•1.1、從骨等硬組織材料到腦組織、眼角膜等極軟的組織材料
•1.2、從粗的椎間盤的樣品到極細的單纖維絲
2、力學類型測試分析功能齊全:
2.1、模塊化集成壓縮、張力、剪切、摩擦、扭轉、穿刺、摩擦和非平面壓痕、3D厚度、3D表面輪廓等各種力學類型支持,微觀結構表征及動態力學分析研究
2.2、多物理場耦合加載測試
•3、通高量壓痕、壓縮測試分析(48孔板中壓痕測試分析)
•4、高精度、高分辨率:
•4.1、位移分辨率達0.1um
•4.2、力分辨率達0.025mN
•4.3、樣品直徑小25um
•5、行程范圍廣:50-250mm
•6、體積小巧、可放入培養箱內
•7 、DIC (Digital Image Correlation)數字圖像相關法非接觸式的高精度位移、應變測量
•9、活性組織電位分布測試分析
•10、產品成熟,文獻量達上千篇
biomomentum多軸機械測試儀Mach-1材料力學性能簡介:
biomomentum多軸機械測試儀Mach-1材料力學性能是指材料在不同環境(溫度、介質、濕度)下,承受各種外加載荷(拉伸、壓縮、彎曲、扭轉、沖擊、交變應力等)時所表現出的力學特征。
可以放進標準培養箱里進行培養;
biomomentum多軸機械測試儀Mach-1測試意義及適用范圍:
材料力學性能可以應用到生產的任何階段,從測試原材料質量直到檢查制成品的耐用性。 測試可對廣泛多樣的生物樣品、材料和產品進行,包括軟組織、軟骨組織、皮膚組織、凝膠組織、高分子材料、生物產品、醫學鑒定和水凝膠等。力學性能測試可幫助企業向客戶證明其產品的力學性能、穩定性和安性,從而獲得基礎數據和競爭勢。
1、多功能、多軸向,適用樣品范圍廣:
1.1、從骨等硬組織材料到腦組織、眼角膜等極軟的組織材料
1.2、從粗的椎間盤的樣品到極細的單纖維絲
2、力學類型測試分析功能齊全:
2.1、模塊化集成壓縮、張力、剪切、摩擦、扭轉、穿刺、摩擦和非平面壓痕、3D厚度、3D表面輪廓等各種力學類型支持,微觀結構表征及動態力學分析研究
2.2、多物理場耦合加載測試