您好, 歡迎來到化工儀器網(wǎng)! 登錄| 免費注冊| 產(chǎn)品展廳| 收藏商鋪|
當前位置:上海韜世實業(yè)發(fā)展有限公司>>美國AB>>AB信號調(diào)節(jié)器>> CM103美國AB羅克韋爾交流電機
參 考 價 | 面議 |
產(chǎn)品型號CM103
品 牌其他品牌
廠商性質(zhì)經(jīng)銷商
所 在 地上海市
更新時間:2019-09-06 17:17:47瀏覽次數(shù):863次
聯(lián)系我時,請告知來自 化工儀器網(wǎng)供貨周期 | 一個月以上 | 應用領域 | 醫(yī)療衛(wèi)生,環(huán)保,生物產(chǎn)業(yè),農(nóng)業(yè),能源 |
---|
美國AB羅克韋爾交流電機
電機原理
用單相電容式電機說明:單相電機有兩個繞組,即起動繞組和運行繞組。兩個繞組在空間上相差90度。在起動繞組上串聯(lián)了一個容量較大的電容器,當運行繞組和起動繞組通過單相交流電時,由于電容器作用使起動繞組中的電流在時間上比運行繞組的電流超前90度角,先到達大值。在時間和空間上形成兩個相同的脈沖磁場,使定子與轉(zhuǎn)子之間的氣隙中產(chǎn)生了一個旋轉(zhuǎn)磁場,在旋轉(zhuǎn)磁場的作用下,電機轉(zhuǎn)子中產(chǎn)生感應電流,電流與旋轉(zhuǎn)磁場互相作用產(chǎn)生電磁場轉(zhuǎn)矩,使電機旋轉(zhuǎn)起來。
一、簡介
幾種比較常見的直接轉(zhuǎn)矩控制策略中,對于中小容量而言,控制方案重點在于進行轉(zhuǎn)矩、磁鏈無差拍控制和提高載波頻率。對大容量來說,其區(qū)別在于低速時采用了間接轉(zhuǎn)矩控制,從而達到低速時降低轉(zhuǎn)矩脈動的目的。
二、直接轉(zhuǎn)矩控制技術概述
相對于直流電機在結(jié)構簡單、維護容易、對環(huán)境要求低以及節(jié)能和提高生產(chǎn)力等方面具有足夠的優(yōu)勢,使得交流調(diào)速已經(jīng)廣泛運用于工農(nóng)業(yè)生產(chǎn)、交通運輸、國防以及日常生活之中。隨著電力電子技術、微電子技術、控制理論的高速發(fā)展,交流調(diào)速技術也得到了長足的發(fā)展。在高性能的交流調(diào)速領域主要有矢量控制和直接轉(zhuǎn)矩控制兩種。1968年Darmstader工科大學的Hasse博士初步提出了磁場定向控制(Field Orientation)理論,之后在1971年由西門子公司的F.Blaschke對此理論進行了總結(jié)和實現(xiàn),并以專li的形式發(fā)表,逐步完善并形成了各種矢量控制方法。
三、特點
對于直接轉(zhuǎn)矩控制來說,一般文獻認為它由德國魯爾大學的M.Depenbrock教授和日本的I.Takahashi于1985年首先分別提出的。對于磁鏈圓形的直接轉(zhuǎn)矩控制來說,其基本思想是在準確觀測定子磁鏈的空間位置和大小并保持其幅值基本恒定以及準確計算負載轉(zhuǎn)矩的條件下,通過控制電機的瞬時輸入電壓來控制電機定子磁鏈的瞬時旋轉(zhuǎn)速度,來改變它對轉(zhuǎn)子的瞬時轉(zhuǎn)差率,達到直接控制電機輸出的目的。在控制思想上與矢量控制不同的是直接轉(zhuǎn)矩控制通過直接控制轉(zhuǎn)矩和磁鏈來間接控制電流,不需要復雜的坐標變換,因此具有結(jié)構簡單、轉(zhuǎn)矩響應快以及對參數(shù)魯棒性好等優(yōu)點。
四、控制
事實上,1977年A·B·Plunkett曾經(jīng)在IEEE的工業(yè)應用期刊上提出了類似于直接轉(zhuǎn)矩控制的結(jié)構和思想的直接磁鏈和轉(zhuǎn)矩調(diào)節(jié)方法,在這種方法中,轉(zhuǎn)矩給定與反饋之差通過PI調(diào)節(jié)得到滑差頻率,此滑差頻率加上電機轉(zhuǎn)子機械速度得到逆變器應該輸出的電壓定子頻率;定子磁鏈給定與反饋之差通過積分運算得到一個電壓與頻率之比的量,并使之與定子頻率相乘得到逆變器應該輸出的電壓,后通過SPWM方法對電機進行控制。
直接轉(zhuǎn)矩控制提出來將近有20年了,在此基礎上已經(jīng)發(fā)展出來了多種控制策略及其數(shù)字化實現(xiàn)方案、磁鏈觀測以及速度辨識的方法,本文將對它們進行分類,并作分析和比較。
五、直接轉(zhuǎn)矩控制策略
直接轉(zhuǎn)矩控制是基于靜止坐標系 下來進行控制的,如圖1所示,在傳統(tǒng)的直接轉(zhuǎn)矩控制中,通過檢測定子兩相電流、直流母線電壓和電機轉(zhuǎn)速(在無速度傳感器DTC中不需要測速)進行定子磁鏈觀測和轉(zhuǎn)矩計算,使二者分別與定子磁鏈給定和轉(zhuǎn)矩給定相減,其差值又分別通過各自的滯環(huán)相比較,輸出轉(zhuǎn)矩和磁鏈的增、減信號,把這兩個信號輸入優(yōu)化矢量開關表,再加上定子磁鏈所在的扇區(qū)就得到了滿足磁鏈為圓形、轉(zhuǎn)矩輸出跟隨轉(zhuǎn)矩給定的電壓矢量。磁鏈和轉(zhuǎn)矩的滯環(huán)可以設置多級,并且其寬度可變,滯環(huán)寬度越小,開關頻率越高,控制越精確。
六、直接轉(zhuǎn)矩控制方法
直接轉(zhuǎn)矩控制具有結(jié)構簡單、轉(zhuǎn)矩響應快以及對參數(shù)魯棒性好等優(yōu)點,但它卻是建立在單一矢量、轉(zhuǎn)矩和磁鏈滯環(huán)的Bang-Bang控制基礎之上的控制方法,不可避免地造成了低速開關頻率低、開關頻率不固定以及轉(zhuǎn)矩脈動大,限制了直接轉(zhuǎn)矩控制在低速區(qū)的應用。針對于此,國內(nèi)外有很多學者提出了各種提高開關頻率、固定開關頻率以及減小轉(zhuǎn)矩脈動的方法,本節(jié)將逐一列出分析比較。
七、空間矢量調(diào)制方法
T.G.Habetler的空間矢量調(diào)制方法
把無差拍方法應用于直接轉(zhuǎn)矩控制首先是由美國人T.G.Habetler提出來的。這種方法的主要思想是在本次采樣周期得到轉(zhuǎn)矩的給定值與反饋值之差。
空間電壓矢量的幅值和相位是任意的,可以通過相鄰的兩個基本的電壓矢量合成而得。利用計算出來的空間電壓矢量可以達到轉(zhuǎn)矩和磁鏈無差拍的目的。
利用Habetler的無差拍方法,從理論上可以*使磁鏈和轉(zhuǎn)矩誤差為零,從而消除轉(zhuǎn)矩脈動,可以彌補傳統(tǒng)DTC的Bang-Bang控制的不足,使電機可以運行于極低速下。另外,通過無差拍控制得到的空間電壓矢量可以使開關頻率相對于單一矢量大幅提高并且使之固定,這對于減少電壓諧波和電機噪聲是很有幫助的。
但是,空間電壓矢量作用時間可能會大于采樣周期,這說明不能同時滿足磁鏈和轉(zhuǎn)矩無差拍控制。因此作者提出了三個步驟,首先是否轉(zhuǎn)矩滿足無差拍,如果不滿足再看是否磁鏈滿足無差拍,如果還不滿足就按照原有直接轉(zhuǎn)矩控制矢量表來選取下一周期的單一電壓矢量。因此按照Habetler的無差拍方法大的計算量有四個步驟,這將耗費很大的計算資源,不易實現(xiàn),另外在整個計算過程中對電機參數(shù)的依賴性比較大,這將降低控制的魯棒性。
八、轉(zhuǎn)矩或磁鏈控制方法
在T·G·Habetler的無差拍的直接轉(zhuǎn)矩控制方法中,由于計算量很大而不易實現(xiàn),因此出現(xiàn)了一系列的簡化的無差拍直接轉(zhuǎn)矩控制,比較典型的是轉(zhuǎn)矩跟蹤預測方法。在這種方法中,分析了低速轉(zhuǎn)矩脈動的情況,得出轉(zhuǎn)矩脈動鋸齒不對稱的結(jié)論。
非零電壓矢量和零電壓矢量對轉(zhuǎn)矩變化的作用是不同的,前者可以使轉(zhuǎn)矩上升或下降,而后者總是使轉(zhuǎn)矩下降。另外,在不同的速度范圍內(nèi)二者對轉(zhuǎn)矩作用產(chǎn)生的變化率也在變化。在轉(zhuǎn)矩預測控制方法中,電壓矢量在空間的位置是固定不變的,合成在兩個單一電壓矢量的中間,但是電壓矢量不是作用整個采樣周期,而是有一定的占空比,在一個采樣周期中可以分為非零電壓矢量和零電壓矢量。如果使下一采樣周期非零電壓矢量和零電壓矢量共同作用產(chǎn)生的轉(zhuǎn)矩變化等于本周期計算出來的轉(zhuǎn)矩誤差。
將消除轉(zhuǎn)矩誤差,達到轉(zhuǎn)矩無差拍控制的目的。即使出現(xiàn)計算出來的電壓矢量作用時間超出采樣周期,也可以用滿電壓矢量來代替,因此是非常易于實現(xiàn)的,從實驗結(jié)果來看,轉(zhuǎn)矩脈動的鋸齒基本上對稱,說明轉(zhuǎn)矩的脈動已經(jīng)大為減少。上法認為磁鏈被準確控制或變化緩慢,而沒有考慮磁鏈的無差拍控制,在文獻中對磁鏈也進行了預測控制。
九、預測控制
在這種方法中,通過磁鏈的空間矢量和電壓矢量關系可近似得到:
其中ΔΨS是在電壓矢量作用下的磁鏈幅值改變量,θVΨ是二者的空間角度。設第k采樣周期的磁鏈誤差為ΔΨSO,那么根據(jù)公式⑸,可以得到使第k+1周期磁鏈誤差為零的矢量作用時間為。以轉(zhuǎn)矩控制優(yōu)先為原則,根據(jù)轉(zhuǎn)矩預測控制計算出來的矢量作用時間和磁鏈預測控制計算出來的作用時間可以得到綜合的矢量作用時間??紤]磁鏈的無差拍控制之后相對于單純的轉(zhuǎn)矩無差拍控制效果好,既消除了轉(zhuǎn)矩脈動,又不會產(chǎn)生磁鏈畸變,并且計算量不會太大。除了上述的轉(zhuǎn)矩無差拍控制方法,在文獻中也采用了類似的方法,后的電壓矢量計算作用時間也基本相同,此處不詳述。同Habetler的無差拍方法一樣,預測方法也要用到比較多的電機參數(shù),如果能在線實時辨識定子電阻和轉(zhuǎn)子時間常數(shù),將大大提高控制精度。
十、離散時間直接轉(zhuǎn)矩控制
離散時間直接轉(zhuǎn)矩控制使用離散時間的方法進行異步電機的控制在文獻中已經(jīng)有了比較詳細的介紹,在文獻中,*把這種方法使用于直接轉(zhuǎn)矩控制,其基該方法如下:對由電機的基本電路模型得到的電壓方程和磁鏈方程進行離散化如下:
a,b的定義對轉(zhuǎn)矩方程也進行離散化,并把方程⑺代入其中,同時也把方程⑺代入到磁鏈的幅值平方表達式中去,利用離散的轉(zhuǎn)矩方程和離散的磁鏈幅值平方式可以求解出下一周期的的空間電壓矢量的增量ΔVSx和ΔVSy,代入以下方程可以得到轉(zhuǎn)矩和磁鏈無差拍控制的電壓矢量,并對其進行了限幅:
離散時間直接轉(zhuǎn)矩控制可以通過差分方程,把k+1周期的所應達到的轉(zhuǎn)矩和磁鏈遞推出來,因此可以同時達到轉(zhuǎn)矩和磁鏈的無差拍控制,從實現(xiàn)方式上是很適合于數(shù)字化控制的,另外這種方法主要基于定子側(cè)進行控制,所需的電機參數(shù)只有定子電阻和電感,對電機參數(shù)變化的魯棒性比較好,從實驗結(jié)果來看,系統(tǒng)的動態(tài)響應性能是比較好的。但是在這種方法中,需要檢測電機的相電壓,這增加的系統(tǒng)硬件的復雜性,另外,計算量也比較大。
十一、幾何圖形的無差拍控制
對定子磁鏈方程、轉(zhuǎn)子磁鏈方程以及由定、轉(zhuǎn)子磁鏈表達的轉(zhuǎn)矩方程進行離散化,之后把前兩個方程帶入到轉(zhuǎn)矩方程中去。通過離散的轉(zhuǎn)矩方程分析可以知道施加電壓矢量可以使轉(zhuǎn)矩誤差為零,轉(zhuǎn)矩變化到平面上的一條直線上,這條直線與轉(zhuǎn)子磁鏈矢量方向平行。采取同樣的方法可以分析知道施加電壓矢量可以使磁鏈誤差為零,磁鏈變化到平面上的一個園上,這個園與與磁鏈園同心。于是利用直線和園的交點就可以得到使轉(zhuǎn)矩和磁鏈無差拍控制的電壓矢量,當然這個電壓矢量受到逆變器所能輸出的電壓大小的限制。
把幾何圖形引入到無差拍的控制中來是一個比較好的思路,可以得到*的無差拍控制的電壓矢量,同時也有助于理論上的分析。但是就如何把圖形方式和數(shù)字化控制結(jié)合起來從實現(xiàn)方式上來說還是存在有一定的難度。
十二、離散空間矢量調(diào)制方法
無差拍的直接轉(zhuǎn)矩控制從理論上可以大化地消除轉(zhuǎn)矩和磁鏈的的誤差,克服了Bang-Bang控制不精確性的弱點,但是需要比較大的計算量,并且這些計算都是與電機參數(shù)有關,容易引起計算上的誤差。因此在文獻中提出了既不需要多少計算,又能提高轉(zhuǎn)矩和磁鏈控制精度的離散空間矢量調(diào)制方法。
在離散空間矢量調(diào)制方法中,通過對兩電平逆變器輸出的六個基本電壓矢量中的相鄰電壓矢量和零電壓矢量進行有規(guī)律的合成,如圖3是使用相鄰的單一矢量2和單一矢量3以及零電壓矢量合成出來的空間電壓矢量。從圖3中可以看出其合成方法是把整個采樣周期平均分為3段,每一段由非零電壓矢量或零電壓矢量組成,如空間電壓矢量23Z是由矢量2和矢量3以及零電壓矢量各作用1/3采樣周期,可以采用5段式或7段式方式合成(文中沒說明),利用這種有規(guī)律的合成方法一共可以合成出10個電壓矢量。
細化的電壓矢量可以對轉(zhuǎn)矩和磁鏈進行更精確的控制,文獻中對磁鏈使用了傳統(tǒng)的2級滯環(huán)Bang-Bang控制,而考慮到轉(zhuǎn)矩需要動態(tài)響應快,對其劃分了5級滯環(huán)Bang-Bang控制,如圖4所示,不同的誤差帶內(nèi)使用不同的電壓矢量表。另外,作者通過推導得到電壓矢量對轉(zhuǎn)矩變化的影響式子如下所示:
從式⑽中可以看出同一電壓矢量在低速和高速對轉(zhuǎn)矩變化的影響是不同的。因此,在不同的速度范圍使用了不同的電壓矢量,如圖3所示。從另一方面看,低速使用幅值小的電壓矢量以及高速使用幅值大的電壓矢量也是符合V/f=C這一規(guī)律的。傳統(tǒng)的直接轉(zhuǎn)矩控制在低速時連續(xù)使用較多的零電壓矢量使開關頻率很低,轉(zhuǎn)矩脈動大。而按照離散空間矢量調(diào)制的方法由于低速使用幅值小的電壓矢量,因此連續(xù)使用的零電壓矢量少,開關頻率高,轉(zhuǎn)矩脈動小。另外,由于高速時的電壓矢量比較多,可以劃分12個扇區(qū),使用兩個電壓矢量表,這樣可以進行更精確的控制。
從以上分析可以看出,離散的空間矢量調(diào)制方法易于實現(xiàn),不需要有無差拍控制那樣多的計算,保持了傳統(tǒng)Bang-Bang控制的優(yōu)點,因此魯棒性好,但相對于傳統(tǒng)的直接轉(zhuǎn)矩控制又可以提高轉(zhuǎn)矩和磁鏈控制精度,減小低速轉(zhuǎn)矩脈動。但是控制精度越提高,矢量劃分就越細,電壓矢量控制表就越多越大,這將增加控制的復雜性。因此,如果能讓離散的空間矢量調(diào)制與無差拍控制結(jié)合起來,將會有助于克服這個缺點。
十三、輸出空間電壓矢量方法
在直接轉(zhuǎn)矩控制中,如果能獲得任意相位的空間電壓矢量,將有助于減小低速下的轉(zhuǎn)矩脈動,達到矢量控制在低速下的穩(wěn)態(tài)性能。第3節(jié)中的無差拍控制就能得到任意相位的空間電壓矢量,但是計算比較復雜,實現(xiàn)比較困難。另一種獲得任意相位的空間電壓矢量的方法是使用PI調(diào)節(jié)器。A·B·Plunkett的直接轉(zhuǎn)矩和磁鏈調(diào)節(jié)方法就是一種PI調(diào)節(jié)方法,只是那時候還沒有空間電壓矢量這個概念,只能使用SPWM方法輸出電機控制電壓。在文獻中,所提出的直接轉(zhuǎn)矩控制使用PI調(diào)節(jié)的方法,并且用于SVM的方法輸出空間電壓矢量。
由轉(zhuǎn)矩給定和轉(zhuǎn)矩反饋獲得轉(zhuǎn)矩誤差輸入PI調(diào)節(jié)器中,經(jīng)過PI調(diào)節(jié)得到q軸電壓矢量,由定子磁鏈給定和定子磁鏈反饋獲得定子磁鏈誤差輸入PI調(diào)節(jié)器中,經(jīng)過PI調(diào)節(jié)得到d軸電壓矢量,之后將d軸和q軸的電壓矢量旋轉(zhuǎn)變換到靜止坐標系下的α軸和β上,用于空間電壓矢量的輸出,顯然這個空間電壓矢量在空間位置上的相位是任意的。從結(jié)構上看基于PI調(diào)節(jié)的直接轉(zhuǎn)矩控制相似于定子磁鏈定向的矢量控制,但二者是有區(qū)別的,定子磁鏈定向的矢量控制基于同步旋轉(zhuǎn)坐標系,定向于定子磁鏈d軸,q軸磁鏈為零,另外在d軸方向還要對磁鏈和和q軸方向上的電流進行解耦,而這些對于基于PI調(diào)節(jié)的直接轉(zhuǎn)矩控制不需要,其中只需要使轉(zhuǎn)矩輸出和定子磁鏈反饋通過PI調(diào)節(jié)方法來跟隨上給定即可,因此從實現(xiàn)上是比較簡單的,同時魯棒性也比較好,并且相對于傳統(tǒng)的直接轉(zhuǎn)矩控制可以提高開關頻率,減小了低速下的轉(zhuǎn)矩脈動,但是在這種方法當中需要選取合適的PI參數(shù),否則會影響控制系統(tǒng)的動、靜態(tài)性能。除了以上這種PI調(diào)節(jié)的直接轉(zhuǎn)矩控制外,在文獻中還在A·B·Plunkeet的直接轉(zhuǎn)矩和磁鏈調(diào)節(jié)法的基礎上做了進一步的研究,使用空間電壓矢量的方式輸出,此處不詳細敘述。
詳見:美國AB羅克韋爾交流電機
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業(yè)自行提供,信息內(nèi)容的真實性、準確性和合法性由相關企業(yè)負責,化工儀器網(wǎng)對此不承擔任何保證責任。
溫馨提示:為規(guī)避購買風險,建議您在購買產(chǎn)品前務必確認供應商資質(zhì)及產(chǎn)品質(zhì)量。