目錄:廈門超新芯科技有限公司>>樣品臺>>Spring Series In Situ Holders>> 透射電鏡液體電化學原位系統
適用電鏡 | Thermo?Fisher/FEI,?JEOL,?Hitachi |
---|
業界最高分辨率
1.MEMS加工工藝,芯片視窗區域的氮化硅膜厚度最薄可達10nm。
2.芯片封裝采用鍵合內封以及環氧樹脂外封雙保險方式,使芯片間的夾層最薄僅約100~200nm,超薄夾層大幅減少對電子束的干擾,可清晰觀察樣品的原子排列情況,液相環境可實現原子級分辨。
3.經過特殊設計的芯片視窗形狀,可避免氮化硅膜鼓起導致液層增厚而影響分辨率。
高安全性
1.市面常見的其他品牌液體樣品桿,由于受自身液體池芯片設計方案制約,只能通過液體泵產生的巨大壓力推動大流量液體流經樣品臺及芯片外圍區域,有液體大量泄露的安全隱患。其液體主要靠擴散效應進入芯片中間的納米孔道,芯片觀察窗里并無真實流量流速控制。
2.采用納流控技術,通過壓電微控系統進行流體微分控制,實現納升級微量流體輸送,原位納流控系統及樣品桿中冗余的液體量僅有微升級別,有效保證電鏡安全。
3.采用高分子膜面接觸密封技術,相比于o圈密封,增大了密封接觸面積,有效減小滲漏風險。
4.采用超高溫鍍膜技術,芯片視窗區域的氮化硅膜具有耐高溫低應力耐壓耐腐蝕耐輻照等優點。
多場耦合技術
可在液相環境中實現光、電、熱、流體多場耦合。
智能化軟件和自動化設備
1.人機分離,軟件遠程控制實驗條件,全程自動記錄實驗細節數據,便于總結與回顧。
2.全流程配備精密自動化設備,協助人工操作,提高實驗效率。
團隊優勢
1.團隊帶頭人在原位液相TEM發展初期即參與研發并完善該方法。
2.獨立設計原位芯片,掌握芯片核心工藝,擁有多項芯片patent。
3.團隊20余人從事原位液相TEM研究,可提供多個研究方向的原位實驗技術支持。
類別 | 項目 | 參數 |
基本參數 | 桿體材質 | 高強度鈦合金 |
視窗膜厚 | 標配20nm(可升級10nm) | |
適用電鏡 | Thermo Fisher/FEI, JEOL, Hitachi | |
適用極靴 | ST, XT, T, BioT, HRP, HTP, CRP | |
(HR)TEM/STEM | 支持 | |
(HR)EDS/EELS/SAED | 支持 | |
傾轉角 | α=±20°(實際范圍取決于透射電鏡和極靴型號 | |
液層厚度 | 100~200 nm(自行組裝確定厚度) |
(a, b) TEM images of CeO2 and MoO3–CeOx;
(c) elemental distributions of Mo, Ce, and O in MoO3–CeOx;
(d, e) HRTEM images of MoO3–CeOx and size distribution of MoO3;
(f) HRTEM image and FFT pattern of the CeOx support
CeOx-supported monodispersed MoO3 clusters for high-efficiency electrochemical nitrogen reduction under
ambient condition
Journal of Energy Chemistry 56 (2021) 186-192.
In situ atomic resolution HRTEM observation on the behaviors of sulfobetaine molecules at the solid-liquid interface under external electric field and the formation of the waterproof layer around the
negative electrode surface.
Controlling Interfacial Structural Evolution in Aqueous Electrolyte via Anti-Electrolytic Zwitterionic Waterproofing.
Adv. Funct. Mater. 2022, 2207140.
SAED patterns of NiS2/PtNi NWs (a) and Ni3S2/PtNi NWs (d),
high-resolution HAADF–STEM images of NiS2/PtNi NWs heterostructures (b, c) and Ni3S2/PtNi NWs heterostructures (e, f)
Microstrain Engineered NixS2/PtNi Porous Nanowires for Boosting Hydrogen Evolution Activity
Energy Fuels 2021, 35, (8) 6928–6934.
Comparative illustration of graphite layers and atomic channels. Schematic illustration of (a) typical Li+ intercalation in graphite layers and (b) superdense Li diffusion in atomic channels.
Efficient diffusion of superdense lithium via atomic channels for dendrite-free lithium–metal batteries
Energy & Environmental Science 2022, 15 (1), 196-205.