詳細介紹
每天10噸一體化污水處理設備
一體化污水處理設備現貨,僅售20000元(5噸/天的)。
氣浮機設備現貨,僅售24000元(每小時1-5方)。
二氧化氯發生器現貨,僅售2500元(LS-50-400)。
和我們合作即可享受到免費安裝、專車送貨、污水處理技術方案、技術指導、施工指導、技術培訓及各種設備的售后問題等。
A/O→人工濕地工藝是在常規A/O工藝作為生化處理去除有機物的基礎上,其后增加人工濕地處理工藝進行深度處理。A/O工藝由缺氧和好氧兩部分反應組成。污水、回流污泥同時進入缺氧池,同時好氧池內已經充分反應的一部分硝化液回流至缺氧池,缺氧池內的反硝化細菌在缺氧狀態下利用污水中的有機物作為碳源,將回流的硝化液中硝態氮還原為氮氣釋放出來,達到脫氮的目的。之后混合液進入好氧池,完成有機物的氧化、氨化和硝化反應。
人工濕地系統是指由人為因素形成的濕地。人工濕地的處理原理是在特定的填料(如礫石、砂石等)上種存活率高、去污能力強的特定的植物(如美人蕉、蒲草、蘆葦等),形成“填料—微生物—植物”的復合生態系統,當污水流過填料時,經沙石、土壤過濾,以及濾料和植物根際附著的多種微生物共同作用,去除水中的污染物。
該工藝對于廠區地勢有一定要求,要求收納水體的水位較低,人工濕地處理后的污水能夠自流出水,處理規模不宜超過200m3/d。
工藝流程如下:
改良A2/O→人工濕地工藝
改良A2/O→人工濕地處理工藝是在改良A2/O脫氮除磷工藝基礎上增加人工濕地系統作為深度處理一種工藝。改良A2/O工藝是在常規A2/O法基礎上改進而成,在常規A2/O法的厭氧區前增加一個預缺氧區,來自二沉池的回流污泥首先進入預缺氧區,與大約20%的原污水混合,可以進一步消除回流污泥中的溶解氧,減少厭氧區的不利影響,提高P的出去效率;同時,改良A2/O工藝保留混合液的內回流,好氧區的混合應回流至缺氧池在反硝化細菌作用下,硝態氮還原成氮氣,保證了脫氮效果。
此工藝可以根據進水水質調整各池的水力停留時間,達到脫氮除磷的的效果,該工藝具有工藝成熟、系統抗沖擊性強,能耗低、運行成本低、出水水質穩定的特點。改良A2/O工藝出水能夠達到一級B標準,在經過人工濕地的深度處理指標可以達到一級A標準。適用于處理要求較高,處理規模較大,四季氣候變化大的村莊。
厭氧濾池→氧化塘→生態溝渠工藝
生活污水首先經過厭氧濾池,大部分有機物被厭氧濾池濾料截流,在厭氧條件下進行發酵,被分解成穩定的雜質沉淀;污水經厭氧濾池處理后進入氧化塘,有機物在氧化塘內被氧化分解;氧化塘出水進入生態溝渠,生態溝渠利用溝渠內生長的水生植物,進一步吸收氮磷,削減有機物含量。
該工藝采用生物處理、生態工藝相結合的技術,可利用依據地勢而建,使污水自流經過各個處理工序,動力消耗極小。厭氧濾池可在現狀沼氣池基礎上改建,在沼氣池內投加供微生物生長附著的填料,氧化塘可利用現狀的魚塘改建,生態溝渠可利用現狀的排水溝渠或者灌溉溝渠改建。生態溝渠中種植一些污能力強的特定的植物(如美人蕉、蒲草、蘆葦等)提高處理能力。
適用范圍:該工藝適用于現場有池塘或者溝渠的村鎮,處理規模一般不能超過200m3/d。
工藝流程如下:
凈化槽工藝
凈化槽是一種人工強化生物處理的小型生活污水處理裝置,主要用于分散生活污水的就地處理。該技術起源于日本,具備使用壽命長、維護簡單、運營費用低等顯著特點。凈化槽組合了物理、化學和生物處理技術,通過化學絮凝反應、物理沉淀和微生物分解來削減污水中污染物的量。污水經凈化槽處理后其出水水質指標可滿足《城鎮污水處理廠污染物排放標準》(GB18918-2002)一級B標準的要求。該工藝適用于規模較小且處理要求一般的村莊,處理規模不宜超過150m3/d。
MBR(膜生物反應器)工藝
MBR(膜生物反應器)是將膜分離技術與生物處理技術結合產生的新型污水處理工藝。該工藝利用膜組件取代傳統活性污泥法的二沉池,提高了固液分離效率,膜的截留作用使曝氣池能夠維持較高的活性污泥濃度以及富集一些*菌(特別是優勢菌群),從而提高了生化反應速率,同時反應器對進水負荷(水質及水量)的各種變化具有很好的適應性,耐沖擊負荷能力較強。該工藝出水水質標準高并且穩定,容積負荷高占地較小,剩余污泥產量少等優點,但該工藝運行維護較復雜,維護成本高。
每天10噸一體化污水處理設備污水通過該工藝處理后的出水的基本可達到《城市污水再生利用城市雜用水水質》(GB/T 18920-2002)的標準的要求。該工藝適用于出水水質要求較高或者有回用需求的村鎮,處理規模不宜超過500m3/d。
CoMag工藝的顆粒去除效果及整體價值是顯而易見的:以CoMag為局部工藝的系統成本低廉,而且其出水水質效果。
CoMag工藝的優勢與特點:
1、投資&安裝成本低: CoMag工藝的快速加載沉淀意味著可以使用小型沉淀池,這使得建設成本相對較低。由于CoMag系統沉淀池中不需設置經常清洗的斜板和斜管,因此其維護費用也很低。
2、運行成本低: 零部件均為常規件,耗電低,系統操作可靠,并且針對常規的混凝沉淀,CoMag能夠節省10%~50%的藥劑用量,節省了大量的藥劑費用。
3、加載物磁粉損耗低: CoMag工藝的加載物磁粉比砂礫重(加載物磁粉比重 5.2 ,砂礫比重 2.7-3.0 ),而且目數大,降低了攪拌器、泵和其它組件的磨損。 另外,其在整個系統內循環使用,回收率高,損耗量極低。
4、可靠性高:CoMag系統的設備部件和基礎工藝已經在40多年的工業實踐中得到了驗證。自1999年開始不斷地發展和試驗,CoMag工藝在水和污水處理方面的可靠性也不斷得到證明。
5、操作靈活:CoMag工藝抗水力負荷沖擊能力較強,污染物去除率始終維持在較高水平,而且運行穩定。操作簡單,靈活,可隨時根據實際情況進行調整和選擇。
6、低水頭要求:CoMag系統與常規混凝沉淀一樣,具有較低的水頭要求,其從進水到出水均靠重力作用進行依次通過,且其水頭損失極小。
7、抗沖擊負荷能力高:由于其高比重的絮體、較高的沉降速度以及更為穩定的污泥層,所以其耐沖擊負荷很高,在高水量或高污染負荷的情況下依然可以穩定的運行。
8、絮凝劑類型選擇靈活:CoMag工藝所用藥劑為常規絮凝劑,如硫酸鋁、氯化鐵、硫酸鐵或PAC等,選擇范圍廣泛,并可依據具體水質情況選擇*的絮凝劑進行添加。在確保處理效果良好的同時,還能進一步優化其加藥量,保障運行成本的經濟性。
9、節省紫外線消毒費用:由于CoMag系統出水清澈,透射率高,因此可以使用清潔無毒的紫外線消毒技術進行污水的終凈化。
10、快速啟動和恢復時間: 從冷啟動或調整系統后恢復到正常運行 ,CoMag工藝達到全面運行大約僅需30分鐘。
盤片是生物轉盤的主要組成部分,它與生物轉盤的處理效率直接相關。盤片的有效面積及表面粗糙度是影響生物轉盤處理效率的重要因素,盤片材料的價格與輕重直接影響著整個系統的投資及運行成本。盤片材料有效面積越大,其上生長的微生物就越多;盤片材料表面越粗糙,其越容易長上生物膜,而且生物膜厚度也越大;盤片材料越輕,能耗越少,運行費用越低。目前國內常用的盤片材料有:泡沫塑料板、塑料光板、塑料波紋板、玻璃鋼、鋼板、木板、竹板等。
因此,盤片材料有效面積越大、表面粗糙度越高、質量越小,系統處理效果的性價比就會越高。
轉盤轉速
轉盤轉速與系統處理效果之間存在一種拋物線關系,在一個特定的轉速值(*轉速)時,系統處理效果達到*,在低于或高于該轉速下運行生物轉盤,系統處理效果都會下降。原因是:起初轉速由0逐漸增加到有轉速值時,反應器內液體混合也逐漸趨于均勻,基質與轉盤上附著的生物膜得到越來越充分的接觸,系統處理效果逐漸增加到高;但當轉速超過該*轉速并繼續增高時,液體剪力也越來越大,生物膜脫落加速,且轉盤邊界層越來越薄,終基質已無時間傳遞到生物膜,微生物的濃度也不夠了,造成了系統處理效果的降低。