詳細介紹
服務區污水處理一體化設備
小型污水處理設備、大型污水處理設備、各種型號污水處理設備、各種工藝污水處理設備、各種標準的污水處理設備,魯盛環保均加工、銷售。
客戶可來我們公司定做設備、我們為客戶生產設備、送貨到場、派人安裝、維護維修及終生的售后服務。
高負荷活性污泥工藝
目前國內對活性污泥工藝的設計通常采用中等負荷(0.3KgBOD5/(kgMLSS•d)),而在實際中人們從經濟角度考慮總是采用較高的負荷,所以高負荷下的污泥膨脹在中國具體較為廣泛的意義。在高負荷情況下,較常見的是DO不足,所以先采取提高氣水比,強化曝氣,在推流式曝氣池內首端采用射流曝氣等方式,觀察一段時間,找出問題的所在。
如果在以上措施采取后一段時間情況仍無好轉,則可考慮在曝氣池頭部加設軟填料。這一部份對于有機酸去除率很高,從而去除絲狀菌的生長促進因素,幫助絮狀菌生長。這個方法比較有效,但造價較高,且對以后的維修管理造成不便。或者在曝氣池前設置一個水力停留時間約為15min的選擇器,一般能很有效的抑制絲狀菌的生長。
對于間歇式進水的SBR工藝來說,反應器本身是*混合式的,而且在時間上其污染物的基質就存在濃度梯度,所以無需再另設選擇器。通常間歇式SBR工藝產生污泥膨脹的原因是,污泥濃度過高,而進水有機物濃度偏低或水量偏小而導致污泥負荷偏低。對于這種情況,降低排出比,提高基質初始濃度,并對SBR強制排泥,一般就能夠對污泥膨脹現象進行有效的控制。而對于連續進水的SBR如ICEAS和CASS等工藝如果發生污泥膨脹的話,就有必要在進水端設置一個預反應區或生物反應器了。
低負荷活性污泥工藝
低負荷活性污泥工藝曝氣池內基質濃度較低,絲狀菌容易獲得較高的增長效率,所以是最容易產生污泥膨脹。除了在水質和曝氣上想辦法外,最根本和有效的是將曝氣池分成多格且以推流方式運行,或增設一個分格設置的小型預曝氣池作為生物選擇器,在這個選擇器內采用高污泥負荷,吸附部分有機物并消除有機酸。這個辦法不但有助于抑制污泥膨脹,并能有效的改善生化處理效果。在曝氣池內增加填料的方法也同樣在低負荷*混合工藝中適用。
對于A/O和A2/O工藝可通過在在好氧段前設置缺氧段和厭氧段以及污泥回流系統,使混合菌群交替處于缺氧和好氧狀態,并使有機物濃度發生周期性變化,這既控制了污泥膨脹又改善了污泥的沉降性能。而交替工作式氧化溝和UNITANK工藝等連續進水的系統因為其本身在時間和空間上就有了實際上的“選擇器”,所以對污泥膨脹有著效強的控制能力。如果這兩種工藝發生污泥膨脹,則可通過調整曝氣控制溶氧量和控制回流污泥量來調節池內的污泥負荷及DO,通過一段時間的改善,一般能夠控制住污泥膨脹現象。
高濃度氨氮廢水采用生化方法處理時,需要較高的供氧量和生物量,因而成為生化處理含氮污染物的難題之一.傳統的生物脫氮工藝(即硝化-反硝化工藝)普遍存在著占地面積大、能耗高、外加碳源需求量大及脫氮效率低等不足.部分亞硝化和厭氧氨氧化聯合技術是新型的廢水生物脫氮方法,與傳統的生物脫氮方法相比,該方法能夠節省64%的能量需求和100%的外加碳源及減少80%~90%的污泥量,特別是在高氨氮廢水的治理方面存在很大的優勢.膜曝氣生物膜反應器(Membrane-aerated biofilm reactor,MABR)是利用透氣膜進行曝氣供氧的一種污水生物處理工藝,溶解氧通過氣體透過性膜擴散進入生物膜進而氧化污染物,同時氣體透過性膜也可作為生物膜生長的載體.傳統的多孔或者微孔曝氣裝置氧的利用效率不高,膜曝氣生物膜反應器由于采用無泡曝氣的方式,氧氣的傳遞效率可以接近100%.高效的氧傳質速率、較高的生物膜表面積和內外分層的特殊生物膜結構,使得MABR工藝在高濃度廢水的處理中具有明顯的優勢.
MABR特殊的生物膜分層結構能夠實現在同一系統中同時發生氧化和還原作用,通過調整供氧壓力來控制氧氣的傳遞,氧氣能夠直接透過曝氣膜被硝化菌利用,為氨氧化菌的生長提供了良好的生存環境.有研究在MABR小試中實現了部分亞硝化.但是,目前對于MABR中試系統中部分亞硝化的穩定運行的抑制條件(如生物膜厚、氨氮負荷等)及微生物機理方面的研究尚鮮有報道.
服務區污水處理一體化設備污泥膨脹:
正常的活性污泥沉降性能良好,含水率一般在99%左右。當活性污泥變質時,污泥不易沉淀,SVI值增高,污泥結構松散和體積膨脹,含水率上升,澄清液稀少,顏色也有異變。此即污泥膨脹。污泥膨脹主要是由于大量絲狀細菌(特別是球衣細菌)在污泥內繁殖,使泥塊松散,密度降低所致;也有由真菌的大量繁殖引起的污泥膨脹。污泥膨脹不但發生率高,發生普遍,而且一旦發生難以控制,通常都需要很長的時間來調整。針對污泥膨脹,各方面的理論很多,但并不**,甚至有很多相互矛盾,這給污水處理工作者造成很大的麻煩。
污水中碳水化合物較多,溶解氧不足,缺乏氮、磷等營養物,水溫高,pH值較低等都易引起污泥膨脹。為防止污泥膨脹,首先應加強操作管理,經常檢測污水水質、曝氣池內溶解氧、污泥沉降比、污泥指數和進行顯微鏡觀察等。
污泥膨脹控制的一般方法:
污泥負荷(F/M)對污泥膨脹的影響
溶解氧濃度對污泥膨脹的影響
其它方面對污泥膨脹的影響
針對上述問題采取的方式:
缺氧、水溫較高可加大曝氣量,或者降低進水量以減輕負荷,亦可降低MLSS值使得需氧量減少等。
F/M污泥負荷率過高,可提高MLSS值,以調整負荷,必要時可停止進水。
缺乏氮、磷等營養物,可投加硝化污泥液,或氮磷等成份。
保持池內足夠的溶解氧對于高負荷的生化系統特別重要, 一般至少應控制DO>2mg/L。
若污泥大量流失,可投加5~10mg/L氯化鐵,幫助凝聚,刺激菌膠團的生長。