詳細介紹
鄉鎮生活一體化污水處理設備
公司主營:地埋式一體化污水處理設備、氣浮設備、沉淀設備、二氧化氯發生器、加藥裝置等。
公司優勢:成立年限長、經驗豐富、污水技術多樣化、設備全新、工藝齊全、處理水量靈活,資質齊全,客戶的保障。
運輸采用汽運、專車送貨上門,安裝本地有安裝人員,售后本地有辦事處。
客戶可來我公司考察,定單臺設備、多臺設備、批發設備均有優惠,更有特產大禮相送。
快速滲濾系統(Rapid Infiltration System,簡稱RI系統)是污水土地處理系統的一種。傳統的RI系統占地面積大,水力負荷低,最高的日水力負荷也僅0.03m,這是由于傳統的RI系統主要是利用天然的砂土地進行滲濾,場地土層不均一而使得水力負荷無法提高。為此,中國地質大學(北京)近年來致力于人工快速滲濾系統(Constructed Rapid Infiltration System,簡稱CRI系統)的研究,到目前已成功地從試驗研究轉向實際工程應用,并首先在我國南方地區開始推廣應用,這一技術目前國外尚未見有研究報導,屬于*次開發。CRI系統的滲濾池為人工填充的具有一定級配的天然河砂,并摻入一定量的特殊填料,以保證既有較高的水力負荷,又能滿足出水的處理要求。CRI系統是利用快滲池內的人工介質和特殊填料進行的過濾、吸附以及微生物的降解等多種作用的相互結合,使廢水中的有機物進行分解去除,從而達到水質凈化目的的一種生態學處理方法,它適用于河流污水資源化和生活污水處理。CRI系統不僅具有操作簡單、運行管理方便、低能耗、低投資和低運行管理費用等優點,同時也有水力負荷高和出水水質好等特點。
CRI系統工藝流程
預沉池的功能主要是降低污水中的SS,以便提高滲池的滲濾速度,防止堵塞。污水通過滲池的過程中產生綜合的物理、化學和生物反應使污染物得以去除,其中主要是生物化學反應,使有機污染物通過生物降解而去除。地下集水系統的功能是收集凈化水,凈化水進入清水池貯存供回用。快速滲濾法的主體是快速滲濾池,該系統由至少兩個裝填有一定厚度砂石填料濾池組成,采用干濕交替的運轉方式,通過濾池內的好氧、厭氧及兼氧性微生物降解污染物。落干期滲池大部分為好氧環境,淹水期滲池為厭氧環境,所以滲池內經常是好氧和厭氧相互交替,有利于微生物發揮綜合處理作用,去除有機物。就氮的去除而言,落干時產生銨化和硝化作用,淹水期產生反硝化作用,氮通過上述轉化過程而被去除;懸浮固體經過過濾去除;重金屬經吸附和沉淀去除;磷經吸附和與滲池內的特殊填料形成羥基磷酸鈣沉淀而去除;病原體經過濾、吸附、干燥、輻射和吞噬而去除;有機物經揮發、生物和化學降解等作用而分別被去除。
混凝沉降法是污水處理中的常用方法。通過向污水中投加混凝劑,使細小懸浮顆粒和膠體顆粒聚集成較粗大的顆粒而沉降,得以與水相分離,使污水得到凈化。它可以降低污水的濁度和色度,去除多種高分子有機物及某些重金屬和放射性物質。絮凝劑按照其化學成分可分為無機絮凝劑和有機絮凝劑兩大類。無機絮凝劑主要有鋁鹽系、鐵鹽系以及在鋁鹽和鐵鹽為基礎的無機高分子聚合物絮凝劑。
傳統鋁鹽絮凝劑主要包括:氯化鋁和硫酸鋁,鐵鹽包括氯化鐵和硫酸鐵,近來應用較廣的無機高分子聚合物絮凝劑主要有聚合氯化鋁(PAC)、聚合硫酸鋁(PAS)、聚合氯化鐵(PFC)、聚合硫酸鐵(PFS)、聚合硫酸鐵鋁等。有機高分子絮凝劑按照其化學成分可以分為天然高分子絮凝劑、合成高分子絮凝劑以及微生物絮凝劑。按照其所帶電荷情況可以分為陽離子型、陰離子型、非離子型三大類。
絮凝劑的共同特點或原理是將溶液中懸浮微粒聚集聯結形成粗大的絮狀團粒或團塊。而無機高分子聚合物絮凝劑和有機高分子絮凝劑通常要比傳統無機鹽類絮凝劑的絮凝效果好,微生物絮凝劑因不存在二次污染、使用方便等特點將會有很好的應用前景。
無機聚合物絮凝劑的大量絡合離子,能夠強烈吸附膠體微粒,通過粘附、架橋和交聯作用,促使膠體凝聚。有機高分子絮凝劑雖然使用上較不方便,但絮凝性能好,絮凝能力強,絮體容易分離,除油及除懸浮物效果好等特點,特別是丙烯酰胺系列有機高分子絮凝劑以其分子量高、絮凝架橋能力強而顯示出在水處理中的*性。
厭氧生物處理法的基本原理
1.厭氧微生物處理凈化機理
廢水厭氧生物處理的指在無分子氧條件下,通過厭氧微生物(包括兼氧微生物)的作用,將廢水中的各種復雜有機物分解發轉化成甲烷和二氧化碳等 物質的過程,也稱厭氧消化。與好氧過程的根本區別在于不分子態的氧作為受氫體,而以化合態的氧、碳、硫、氫等為受氫體。
廢水的厭氧生物處理是一個復雜的微生物化學過程,它是依靠三大主要類群的細菌:水解產酸細菌、產氫產乙酸細菌和產甲烷細菌的聯合作用完成的。
鄉鎮生活一體化污水處理設備可以粗略地將厭氧消化過程劃分的三個連續階段:
①水解酸化階段;②產氫產乙酸階段;③產甲烷階段。
①厭氧消化的*個階段為水解酸化階段。復雜的大分子、不溶性有機物先在細胞外酶的作用下水解為小分子、溶解性有機物,然后滲入細胞體內,分解產生揮發性有機酸、醇類等。這個階段主要產生較高級脂肪酸。
碳水化合物、脂肪和蛋白質的水解酸化過程如圖6-2所示。
由于簡單碳水化合物的分解產酸作用,要比含氫有機物的分解產氨作用迅速,故蛋白質的分解在碳水化合物分解之后完成。
含氨有機物分解產生的NH3除了提供合成細胞物質的氮源外,在水中部分電離,形成NH4NO3,具有緩沖消化液pH的作用,故有時也把繼碳水化合物分解后的蛋白質分解產氨過程稱為酸性減退期,反應為:
②厭氧消化的第二階段為產氫產乙酸階段。在產氫產乙酸細菌的作用下,*階段產生的各種有機酸被分解轉化成乙酸和H2。在降解奇數碳有機酸時除了產氫產乙酸外還產生CO2,如:
③厭氧消化的第三階段 為產甲烷階段。產甲烷細菌將乙酸、乙酸鹽、CO2、H2等 轉化為甲烷。此過程由兩組生理上不同的產甲烷菌完成,一組把氫和二氧化碳轉化成甲烷,另一組從乙酸或乙酸鹽脫羧產生甲烷;前者約占問題的1/3,后者約占2/3,反應為:
在過濾深度處理工藝中較常用的是膜分離法。該工藝利用隔膜使溶劑(通常是水)同溶質或微粒分離。根據通過膜的物質不同,又可以將其分為滲析和滲透,若通過膜的是溶質則稱為滲析,若通過的是溶劑則稱為滲透。而根據溶質或溶劑透過膜的推動力不同,又可以分為電滲析或電滲透,擴散滲析或自然滲透以及應用最多的反滲透、超濾和微孔過濾。