技術文章
A/O工藝一體化污水處理設施設備
閱讀:1248 發布時間:2020-6-4A/O工藝一體化污水處理設施設備
130 7071 7631
生物接觸氧化法的特點
生物接觸氧化法是生物膜法的一種形式。它是在生物濾池法的基礎上發展起來的,從生物膜固定和污水流動來說,相似于生物濾池法。從污水充滿曝氣池和采用人工曝氣看,它又相似于活性污泥法。所以,生物接觸氧化法兼有生物濾池法和活性污泥法的特點。
實踐表明,生物接觸氧化法具有BOD負荷高,處理時間短,占地面積小,不需污泥回流,不產生污泥膨脹,運轉比較靈活,維護管理方便等一系列優點,因此,是一種有發展前途的處理方法。
生物膜對廢水的凈化作用
在生物接觸氧化法中,微生物主要以生物膜的狀態固著在填料上,同時又有部分絮體或碎裂生物膜懸浮于處理水中。生物接觸氧化池中的生物膜重量,比曝氣池內懸浮活性污泥的重量大得多,一般生物膜重量為6000-14000mg/L,而氧化池中呈懸浮狀的微生物(活性污泥)濃度一般為200-1000 mg/L。由此,可粗略地用生物膜重量表示生物接觸氧化法中的微生物重量,用生物膜濃度表示微生物濃度。
附著在填料表面的生物膜對廢水的凈化作用:
初,稀疏的細菌附著于填料表面,隨著細菌的繁殖逐漸形成很薄的生物膜。在溶解氧和食料(有機物)都充足的條件下,微生物的繁殖十分迅速,生物膜逐漸加厚。生物膜的厚度通常為1.5-2.0mm,其中外表面到1.5 mm深處為好氣菌,1.5 mm深處到內表面與填料壁相接的部分為弱厭氣菌。
廢水中的溶解氧和有機物擴散到生物膜內為好氣菌利用。但是,當生物膜長到一定厚度時,溶解氧無法向生物膜內擴散,好氣菌死亡、溶化,而內層的厭氣菌得以繁殖發展。經過一段時間后,厭氣菌在數量上亦開始下降,加上代謝氣體的逸出,使內層生物膜出現許多空隙,附著力減弱,終于大塊脫落。在生物膜脫落的填料表面上,新的生物膜又重新生長發展。實際上,新陳代謝過程在生物接觸氧化池中生物膜發展的每一個階段都是同時存在著的,這樣就使其去除有機物的能力保持在一個水平上。
生物化學法
生物化學法是利用微生物的代謝作用,使廢水中呈溶解和膠體狀態的有機污染物轉化為無害物質,以實現凈化的方法。可分為好氧生物處理法和厭氧生物處理法。
厭氧處理:在無分子氧的條件下通過厭氧微生物的作用,將廢水中各種復雜有機物分解轉化成甲烷和二氧化碳等物質。
好氧處理:利用好氧微生物在有氧氣存在的條件下進行生物代謝以降解有機物。
A/O工藝一體化污水處理設施設備AAO工藝原理及過程
A-A-O生物脫氮除磷工藝是傳統活性污泥工藝、生物硝化及反硝化工藝和生物除磷工藝的綜合。在該工藝流程內,BOD、SS和以各種形式存在的氮和磷將一并被去除。該系統的活性污泥中,菌群主要由硝化菌、反硝化菌和聚磷菌組成,專性厭氧和一般專性好氧菌群均基本被工藝過程所淘汰。在好氧段,硝化細菌將入流中的氨氮及由有機氮氨化成的氨氮,通過生物硝化作用,轉化成硝酸鹽;在缺氧段,反硝化細菌將內回流帶入的硝酸鹽通過生物反硝化作用,轉化成氮氣逸入大氣中,從而達到脫氮的目的;在厭氧段,聚磷菌釋放磷,并吸收低級脂肪酸等易降解的有機物;而在好氧段,聚磷菌超量吸收磷,并通過剩余污泥的排放,將磷去除。
在以上三類細菌均具有去除BOD的作用,但BOD的去除實際上以反硝化細菌為主。以上各種物質去除過程 可直觀地用圖所示的工藝特性曲線表示。污水進入曝氣池以后,隨著聚磷菌的吸收、反硝化菌的利用及好氧段好氧生物分解,BOD濃度逐漸降低。在厭氧段,由于聚磷菌釋放磷,TP濃度逐漸升高,至缺氧段升至高。在缺氧段,一般認為聚磷菌既不吸收磷,也不釋放磷,TP保持穩定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厭氧段和缺氧段,氨氮濃度穩中有降,至好氧段,隨著硝化的進行,氨氮逐漸降低。在缺氧段,NO3-N瞬間升高,主要是由于內回流帶入大量的NO3-N,但隨著反硝化的進行,硝酸鹽濃度迅速降低。在好氧段,隨著硝化的進行,NO3-N濃度逐漸升高。
AAO工藝參數和影響因素
A-A-O生物脫氮除磷的功能是有機物去除、脫氮、除磷三種功能的綜合,因而其工藝參數應同時滿足各種功能的要求。如能有效去除脫氮或除磷,一般也能同時高效地去除BOD,但除磷和脫氮往往是相互矛盾的,具體體現在某些參數上,使這些參數只能局限在某一狹窄的范圍內,這是A-A-O系統工藝控制較為復雜的主要原因。