技術文章
A2O地埋式一體化污水處理裝置
閱讀:849 發布時間:2019-6-28A2O地埋式一體化污水處理裝置
處理污水?買污水設備找濰坊魯盛水處理設備有限公司。
公司專業從事污水處理及生產污水處理設備多年,在污水處理方面有豐富的經驗,設備更是保障質量,*。
只需來電,一分鐘內可為您選型、選工藝、選尺寸、報價格、報生產周期、安裝周期、到貨周期。
生物反應對環境條件敏感,容易受溫度變化影響。絕大多數微生物正常生長溫度為20~35℃,低溫會影響微生物細胞內酶的活性,在一定溫度范圍內,溫度每降低10℃,微生物活性將降低1倍,從而降低了對污水的處理效果。工藝投入運行后,由于四季的交替和所處的地理位置影響,若不加以人工調控,溫度很難保持適宜。而溫度調控則會耗費大量的能源。解決這一難題的途徑就是開發穩定的低溫生物處理工藝。
近年來國內外已有一些研究涉及低溫廢水生物脫氮技術,提出了一些新方法。筆者將探討低溫對脫氮工藝的影響,比較低溫脫氮工藝的運行策略,并據此指出低溫脫氮工藝的研發方向。
低溫對脫氮工藝的影響
溫度是影響細菌生長和代謝的重要環境條件。絕大多數微生物正常生長溫度為20~35℃。溫度主要是通過影響微生物細胞內某些酶的活性而影響微生物的生長和代謝速率,進而影響污泥產率、污染物的去除效率和速率;溫度還會影響污染物降解途徑、中間產物的形成以及各種物質在溶液中的溶解度,以及有可能影響到產氣量和成分等。
低溫減弱了微生物體內細胞質的流動性,進而影響了物質傳輸等代謝過程,并且普遍認為低溫將會導致活性污泥的吸附性能和沉降性能下降,以及使微生物群落發生變化。低溫對微生物活性的抑制,不同于高溫帶來的毀滅性影響,其抑制作用通常是可恢復的。
硝化工藝
生物硝化反應可以在4~45℃的溫度范圍內進行。氨氧化細菌(AOB)生長溫度為25~30℃,亞硝酸氧化細菌(NOB)的生長溫度為25~30℃。溫度不但影響硝化菌的生長,而且影響硝化菌的活性。有研究表明,硝化細菌適宜的生長溫度為25~30℃,當溫度小于15℃時硝化速率明顯下降,硝化細菌的活性也大幅度降低,當溫度低于5℃時,硝化細菌的生命活動幾乎停止。
大量的研究表明,硝化作用會受到溫度的嚴重影響,尤其是溫度沖擊的影響更加明顯。由于冬季氣溫較低而未能實現硝化工藝穩定運行的案例較為常見。U.Sudarno等考察了溫度變化對硝化作用的影響,結果表明,溫度從12.5℃升至40℃,氨氧化速率增加,但當溫度下降至6℃時,硝化菌活性很低。
隨著脫氮工藝的不斷發展,人們對硝化工藝提出了更高的要求,希望將硝化作用的反應產物控制在亞硝酸鹽階段,作為反硝化或者厭氧氨氧化的前處理技術,可以節約曝氣能耗和添加堿量。通過對兩類硝化細菌(AOB、NOB)的更多認識,出現了短程硝化工藝。
該工藝的核心是選擇性地富集AOB,先抑制再限制后沖洗出NOB,使得AOB具有較高的數量而淘汰NOB,從而維持穩定的亞硝酸鹽積累。短程硝化過程通常由控制溫度、溶解氧、pH來實現。溫度控制短程硝化的基礎在于兩類硝化細菌對溫度的敏感性不同,25℃以上時,AOB的大比生長速率大于NOB的大比生長速率。
據此提出了世界上個工業化應用的短程硝化工藝——SHARON工藝(溫度設置為30~40℃)。因此,在低溫下實現短程硝化頗具挑戰。
反硝化工藝
低溫對于反硝化有顯著的抑制作用,JichengZhong等研究了太湖沉積物中的反硝化作用,經過數月的實驗分析發現反硝化速率呈現季節性變化。U.Welander等考察了低溫條件下(3~20℃)反硝化工藝的運行性能,研究表明在3℃下反應器的反硝化速率僅為15℃下的55%。相對于傳統的缺氧反硝化,溫度對好氧反硝化的脫氮效率影響不顯著,王弘宇等篩選出的一株好氧反硝化菌,在25~35℃下都能達到大于78%的脫氮效率。表1概括了不同溫度下的反硝化速率。
厭氧氨氧化工藝
有學者的研究表明,能夠進行厭氧氨氧化反應的溫度范圍為6~43℃,溫度為28~40℃。在廢水生物處理中,活化能的取值范圍通常為8.37~83.68kJ/mol,而厭氧氨氧化的活化能為70kJ/mol。因此,厭氧氨氧化屬于對溫度變化比較敏感的反應類型,溫度的降低對其抑制作用明顯。
A2O地埋式一體化污水處理裝置AO工藝即缺氧好氧工藝,是一種改進型的采用活性污泥法(有時候也會采取添加填料的生物膜法的方式組合使用,例如:接觸氧化工藝)的污水處理工藝,不僅可以降解有機物,還具有一定的除磷脫氮效果。
*生物池,在*生物池段異養菌將污水中可溶性有機物水解為有機酸,使大分子有機物分解為小分子有機物,不溶性的有機物轉化成可溶性有機物,將蛋白質、脂肪等污染物進行氨化。在O級生物池段存在好氧微生物及消化菌,其中好氧微生物將有機物分解成CO2和H2O;在充足供氧條件下,硝化菌的硝化作用將NH3-N氧化為NO3-,通過回流控制返回至*生物池,在缺氧條件下,異氧菌的反硝化作用將NO3-還原為分子態氮。
A/O法脫氮工藝的特點:
(a) 流程簡單,勿需外加碳源與后曝氣池,以原污水為碳源,建設和運行費用較低;
(b) 反硝化在前,硝化在后,設內循環,以原污水中的有機底物作為碳源,效果好,反硝化反應充分;
(c) 曝氣池在后,使反硝化殘留物得以進一步去除,提高了處理水水質;
(d) A段攪拌,只起使污泥懸浮,而避免DO的增加。O段的前段采用強曝氣,后段減少氣量,使內循環液的DO含量降低,以保證A段的缺氧狀態。
活性污泥法是以活性污泥為主體的廢水生物處理的主要方法。活性污泥法是向廢水中連續通入空氣,經一定時間后因好氧性微生物繁殖而形成的污泥狀絮凝物。其上棲息著以菌膠團為主的微生物群,具有很強的吸附與氧化有機物的能力。利用活性污泥的生物凝聚、吸附和氧化作用,以分解去除污水中的有機污染物。然后使污泥與水分離,大部分污泥再回流到曝氣池,多余部分則排出活性污泥系統。
一、活性污泥法由五部份組成:
①曝氣池:反應主體;②二沉池: 1)進行泥水分離,保證出水水質;2)保證回流污泥,維持曝氣池內的污泥濃度;③回流系統: 1)維持曝氣池的污泥濃度;2)改變回流比,改變曝氣池的運行工況;④剩余污泥排放系統: 1)是去除有機物的途徑之一;2)維持系統的穩定運行;⑤供氧系統: 提供足夠的溶解氧。
污水和回流的活性污泥一起進入曝氣池形成混合液。從空氣壓縮機站送來的壓縮空氣,通過鋪設在曝氣池底部的空氣擴散裝置,以細小氣泡的形式進入污水中,目的是增加污水中的溶解氧含量,還使混合液處于劇烈攪動的狀態,呈懸浮狀態。溶解氧、活性污泥與污水互相混合、充分接觸,使活性污泥反應得以正常進行。
階段,污水中的有機污染物被活性污泥顆粒吸附在菌膠團的表面上,這是由于其巨大的比表面積和多糖類黏性物質。同時一些大分子有機物在細菌胞外酶作用下分解為小分子有機物。
第二階段,微生物在氧氣充足的條件下,吸收這些有機物,并氧化分解,形成二氧化碳和水,一部分供給自身的增殖繁衍。活性污泥反應進行的結果,污水中有機污染物得到降解而去除,活性污泥本身得以繁衍增長,污水則得以凈化處理。
經過活性污泥凈化作用后的混合液進入二次沉淀池,混合液中懸浮的活性污泥和其他固體物質在這里沉淀下來與水分離,澄清后的污水作為處理水排出系統。經過沉淀濃縮的污泥從沉淀池底部排出,其中大部分作為接種污泥回流至曝氣池,以保證曝氣池內的懸浮固體濃度和微生物濃度;增殖的微生物從系統中排出,稱為“剩余污泥”。事實上,污染物很大程度上從污水中轉移到了這些剩余污泥中。