介紹變電站內存在的各種干擾和無線傳感器網絡使用的直接序列擴頻技術,并對無線傳感器網絡應用于變電站中這種高電磁干擾環境中可行性進行論證。
0引言
目前,變電站系統自動化正成為一種不可改變的趨勢,其監控和通信系統的重要性日益凸顯。變電站現有測控系統多采用有線通信方式,但是,有線通信的弊端是顯而易見的,例如傳輸線鋪設復雜、不易檢修和維護,長距離傳輸線易受電磁千擾的影響等等。而無線通信則具有運行可靠、安裝靈活。成本低廉等優點,尤其是在需要實時監控變電站信息的情況下,無線通信更是具有極大的優勢。
現有無線通信方式主要有IEEE802.11b/g、藍牙、ZigBee. GPRS/GSM等。而ZigBee技術更是以安全性高、響應時間快、占用系統資源低、成本低以及能耗低等諸多優點成為變電站實時監控系統中的無線通信技術。ZigBee技術是專門針對無線傳感器開發的,無線傳感器網絡在變電站中的應用研究尚處于起步階段,其研究重點主要放在配電網自動化以及溫度、電能在線監測方面,然而,變電站高強電磁環境對無線傳感器網絡通信的影響的研究還相對缺失。因此本文對變電站的干擾和無線傳感器網絡的調制技術進行研究,對無線傳感器網絡在變電站中的應用的可行性進行論證。
1變電站中的電盛千擾
變電站內部具有復雜的電磁環境,因此必須對各種典型的電磁干擾源進行詳細的分析。變電站存在的典型的電磁干擾源有:50Hz工頻電磁場;設備出口短路引起的脈沖磁場;電暈放電;靜電放電;局部放電;空氣擊
靜電放電和局部放電
兩個具有不同靜定電位的物體,由于直接接觸或靜電場感應引起兩物體間的靜電電荷的轉移。靜電電場的能量達到一定程度后,擊穿其間介質而進行放電的現象就是靜電放電。當外加電壓在電氣設備中產生的場強,足以使絕緣區域發生放電,但在放電區域內未形成固定放電通道的這種放電現象,稱為局部放電。兩者都是小絕緣間隙、小能量放電的擊穿。
這兩種放電產生輻射干擾在幾百kHz以內,且能量低,衰減快,因此對無線通信不會造成影響。
電暈放電和空氣擊穿放電
電力導線在高壓強電場作用下,可能對周圍空間產生游離放電的電暈。導線表面的機械損傷、污染微粒或者導線附近的水滴、灰塵等,都會引起導線表面曲率變化,從而使得點位梯度達到空氣介質的擊穿介質。因此,在電力系統的實際運行中電暈的產生幾乎是不可避免的。
開關操作干擾
變電站內斷路器、隔離開關等一次設備在投切操作或開關故障電流時,由于感性負載的存在,開關觸頭開斷時,產生的電弧的熄滅和重燃可能在母線或線路上引起含有多個頻率分量的衰減振蕩波,通過母線或設備間的連線將暫態電磁場的能量向周圍空間輻射,形成輻射脈沖電磁場。設備操作干擾主要有SF6間隙擊穿和真空間隙擊穿所產生的輻射信號。
SF6間隙擊穿放電和真空間隙擊穿放電所產生的干擾信號覆蓋頻段很寬,且在整個頻帶范圍內電磁信號的強度比較強,在2. 4GHz頻段,電磁信號的強度約為一40dBmW。
無線傳感網網絡的擴頻技術
ZigBee協議
無線傳感器網絡應用的ZigBee協議的框架是建立在IEEE802. 15. 4標準之上,IEEE802. 15. 4定義}ZigBee的物理層和媒體訪問層。IEEE802. 15. 4定義了兩個物理層標準,分別是2. 4GHz物理層和868月I5MHz物理層。兩個物理層都基于直接序列擴頻(DSSS)技術,主要完成能量檢測、鏈路質量指示、信道選擇以及數據發送和接收等功能。無線傳感器網絡輸出2.4GHzISM頻段直接序列擴頻信號,輸出功率大于一17dBm,工作頻段2. 405^2. 480GHz 。
直接序列擴頻技術
擴頻是利用與信息無關的為隨機碼,通過調制的方法將己調制的頻譜寬度擴展到比原調制信號的帶寬寬得多的過程。常用的擴頻技術有調頻、混合擴頻和直接序列擴頻等。無線傳感器網絡采用直接序列擴頻技術。
直接序列擴頻系統就是用具有高碼率的偽隨機(PN)序列,在發送端擴展信號的頻譜,在接受端用相同的PN序列對信號進行解擴,還原出原始信號。
變電站干擾對傳感器網絡的形晌
變電站的電磁干擾主要分為兩部分:0~300MHz低頻部分、2. 4~2. 5GHz同頻帶寬。
1)電暈放電和空氣擊穿所產生的低頻干擾的頻帶離無線傳感器網絡的工作頻段2. 4GHz很遠,并且強度小于一40dBmW,可以通過低通濾波器進行處理,因此對無線傳感器網絡的無線通信基本沒有影響。
SF6間隙擊穿放電和真空間隙擊穿放電所產生的電磁干擾在2. 405GHz~2. 485GHz頻帶內也有較強的信號存在,在間隙擊穿電壓為I5KV左右時電磁強度達到一40dBmV。變電站現場的擊穿電壓可能會更高,電磁強度也就更高,因此對無線通信會有一定的影響。但是同頻干擾對于無線傳感器網絡通信的影響是很小的,這可以通過兩方面說明:
①無線傳感器網絡應用的直接序列擴頻技術,直接序列擴頻技術的抗干擾能力是由于接收機將擴頻后的信號再次與擴頻碼相乘還原出原始信號,同時干擾信號也在接收端與擴頻碼相乘從而將其頻帶展寬,干擾信號能量也就分散到很寬的頻帶上,這樣2. 405GHz~2. 485GHz頻帶內只有很小部分干擾信號能量,因此同頻噪聲對于無線傳感器網絡通信干擾是微乎其微的。
②SF6間隙擊穿放電和真空間隙擊穿放電產生瞬態電磁千擾,這種干擾只能持續很短的時間,因此對無線傳感器網絡的干擾也是瞬間的,瞬態電磁干擾結束,無線傳感器網絡也恢復正常。
除電磁干擾外,變電站內還存在不可忽略的多徑干擾.由于變電站中大量的金屬設備和柱狀物容易反射射頻信號,使得接收端接收到的信號包括了多個不同傳輸路徑的折射或反射信號,從而造成多徑干擾。多徑會導致信號的衰落、相移和分解,這對以信號能量為判斷標準的無線系統必將產生很大的影響。但是直接序列擴頻技術對于抗多徑干擾有很大的優勢,其中很大程度上取決于擴頻通信中所采用的偽隨機序列的周期相關特性,因為隨機序列具有類似白噪聲一般的尖銳自相關性,在接收端解擴是可以有效地抑制多徑信號的干擾,達到提高信噪比和通信質量的目的。標準DSSS接收機通過較佳的相關器自動選擇幅度zui大的波形信號,比與之鎖定同步,從而降低多徑干擾。因此無線傳感器網絡應用的直接序列擴頻技術可以很好的抑制多徑干擾。