目錄:北京易科泰生態技術有限公司>>氣候與環境>>環境氣體監測>> RF-O2 熒光光纖氧氣測量儀(環境領域)
產地類別 | 進口 | 應用領域 | 環保,生物產業,農業,綜合 |
---|
RF-O2熒光光纖氧氣測量儀由德國Pyroscience公司聯合歐洲多國科學家研制生產,基于REDFLASH(RF)光學傳感器技術,操作簡單,無需維護。氧氣測量儀由主機、傳感器及軟件組成,應用于環境科學、生態科學、植物科學、動物科學、海洋科學、生物醫學、生物技術、食品科學等各個領域。在環境領域,RF-O2熒光光纖氧氣測量儀廣泛用于大氣、水體、土壤、沉積物等樣品耗氧量的測量和氧氣含量的監測。
應用方向
l 大氣、土壤、水、沉積物O2測量監測
l 濕地、海洋沉積、河湖沉積剖面O2測量監測
l 污水處理、沼氣、垃圾填埋場、有機物降解等O2測量監測
功能特點
l REDFLASH技術無氧耗、高速響應、低電耗、高精度、低交叉敏感性、低干擾
l 氧氣傳感器類型靈活多樣,包括探頭、探針、插入式、裸光纖、耐溶劑等接觸式傳感器以及薄膜貼、流通管、呼吸瓶等非接觸傳感器
l 氧氣測量范圍全量程和痕量可選
l 測量儀小巧緊湊、電腦USB供電,無需額外電源
l 氧氣測量1、2、4通道可選
l 具備實時溫度補償
l 高時空解析度
l 氣體、液體樣品均可使用
l 具模擬輸出和廣播模式
l 配套分析軟件具備耗氧率計算和漂移補償的功能
l 即插即用
l 輕松校準
技術指標
1) 新一代FireSting-O2(FS-O2)測量儀
a) 有1通道、2通道、4通道可供選配,分別可接1個、2個或4個光學氧氣或溫度傳感器;另具備一個Pt100熱電阻溫度傳感器通道
b) 最大采樣頻率:每秒10-20次
c) 內置氣壓傳感器,300-1100mbar,0.06mbar分辨率,精確度±3mbar
d) 內置濕度傳感器,0-100%RH,分辨率0.04%,精確度±0.2%
e) 具模擬輸出和自動模式,0-2.5VDC
f) USB2.0接口,通過USB口PC供電,20mA@5VDC
g) 端口:串行接口UART
h) 大小:78x120x24mm,重290g
i) 操作環境:0-50℃,非冷凝
j) 軟件:Pyro Workbench,Windows7/8/10,配置700MB硬盤、1GB內存、1360×768屏幕分辨率
2) 全量程氧氣測量參數
最佳測量范圍 0-50%O2(氣相),0-22mg/L(溶解氧)
最大測量范圍0-100%O2(氣相),0-44mg/L(溶解氧)
檢測極限:0.02%O2(氣相),0.01mg/L(溶解氧)
適用溫度范圍:0-50℃
3) 痕量氧氣傳感器測量參數
最佳測量范圍 0-10%O2(氣相),0-4.5mg/L(溶解氧)
最大測量范圍 0-21%O2(氣相),0-9mg/L(溶解氧)
檢測極限:0.005%O2(氣相),0.002mg/L(溶解氧)
適用溫度范圍:0-50℃
4) 氧氣校準膠囊:用于氧氣傳感器的零點校準。每個膠囊可制備50mL的校準溶液,10個裝。
5) 配套數據采集和展示軟件Pyro Workbench:支持多達10個Pyro的測量設備同時運行。軟件提供設備設置和傳感器校準的功能。傳感器讀數能以數字和圖表的形式展示,并能以相應數據文件存儲,便于進一步的數據分析。
6) 配套分析軟件Pyro Data Inspector:提供耗氧率計算和漂移補償等數據分析的功能。
7) 傳感器:類型多樣,包括探頭傳感器、探針傳感器、裸光纖傳感器、插入式傳感器、耐溶劑傳感器、薄膜貼、流通管、呼吸瓶等。
應用案例
1. 西北農林科技大學旱區農業水土工程教育部重點實驗室研究發現:未來氣候變暖,而降低氮肥使用率并結合增氧灌溉,對于保持作物產量及降低土壤凈溫室氣體排放具有重要實踐意義。研究人員使用了FSO2測量儀測量了土壤含氧量。北京易科泰公司為其提供該應用場景下的設備和專業的技術支持。
2. 德國的研究人員使用FSO2四通道測量儀和伸縮探針式傳感器在船上測量湖泊中氧氣的空間分布狀況。
3. 荷蘭海洋研究所使用FSO2四通道測量儀和薄膜貼式氧氣傳感器在調查船上實地測量季節性缺氧湖沉積物的總耗氧量(TOU,Total Oxygen Uptake)的時空變化。曲線圖為3個重復沉積物樣品和一個對照樣品(綠色,加入底層水)的溶解氧變化曲線。
4. 德國的研究人員利用FSO2測量儀和裸光纖式氧氣傳感器對土壤氧氣進行測量,以評估不同種類蚯蚓在低氧條件下對土壤改良的效率。
近年部分參考文獻
l Beman, J. M. et al. Biogeochemistry and hydrography shape microbial community assembly and activity in the eastern tropical North Pacific Ocean oxygen minimum zone. Environmental Microbiology n/a,.
l Stadler, M., Ejarque, E. & Kainz, M. J. In-lake transformations of dissolved organic matter composition in a subalpine lake do not change its biodegradability. Limnology and Oceanography 65, 1554–1572 (2020).
l Shrestha, P. et al. Biodegradation testing of volatile hydrophobic chemicals in water-sediment systems – Experimental developments and challenges. Chemosphere 238, 124516 (2020).
l Michaud, A. B. et al. Glacial influence on the iron and sulfur cycles in Arctic fjord sediments (Svalbard). Geochimica et Cosmochimica Acta 280, 423–440 (2020).
l Hu, B. et al. Diurnal variations of greenhouse gases emissions from reclamation mariculture ponds. Estuarine, Coastal and Shelf Science 237, 106677 (2020).
l Graffam, M., Paulsen, R. & Volkenborn, N. Hydro-biogeochemical processes and nitrogen removal potential of a tidally influenced permeable reactive barrier behind a perforated marine bulkhead. Ecological Engineering 155, 105933 (2020).
l Gu, X.-B., Cai, H.-J., Du, Y.-D. & Li, Y.-N. Effects of film mulching and nitrogen fertilization on rhizosphere soil environment, root growth and nutrient uptake of winter oilseed rape in northwest China. Soil and Tillage Research 187, 194–203 (2019).
l Du, Y.-D., Gu, X.-B., Wang, J.-W. & Niu, W.-Q. Yield and gas exchange of greenhouse tomato at different nitrogen levels under aerated irrigation. Science of The Total Environment 668, 1156–1164 (2019).
l Xia, D. et al. Role of sulphide reduction by magnesium hydroxide on the sediment of the eutrophic closed bay. Aquaculture Research 49, 462–470 (2018).
l Long, M. H. & Nicholson, D. P. Surface gas exchange determined from an aquatic eddy covariance floating platform. Limnology and Oceanography: Methods 16, 145–159 (2018).
l Boyko, V., Torfstein, A. & Kamyshny, A. Oxygen Consumption in Permeable and Cohesive Sediments of the Gulf of Aqaba. Aquat Geochem 24, 165–193 (2018).
l Recoules, L. et al. A MEMS approach to determine the biochemical oxygen demand (BOD) of wastewaters. J. Micromech. Microeng. 27, 075018 (2017).