徠卡體視顯微鏡在特殊照明、電腦程序和樣品制備的幫助下,觀察細胞特別是活體內細胞,能得到細胞結構和細胞動力學的寶貴信息。不過,這對于高等生物尤其困難。德國卡爾斯魯厄理工學院(KIT)、馬克斯·普朗克協會高分子研究所,以及美國國家衛生研究所(NIH)的研究人員,通過一種新觀察方法觀察到八分之一微米大小的幼魚細胞結構。該研究發表在NatureMethods雜志上。
“斑馬魚的幼魚是透明的,特別適合細胞遺傳學研究,”KIT的MarinaMione解釋道。徠卡體視顯微鏡為了觀察其特定結構,研究人員通常通過基因工程方法對幼魚進行熒光染料染色。Mione研究了斑馬魚細胞骨架的一部分,微管。這些線狀微管長約100µm直徑約20nm,相當于人類頭發的十萬分之一。“細胞中微管無處不在,并且細胞需要通過微管進行分裂和運動。”
徠卡體視顯微鏡在這項新觀察方法中,樣品不是被照明,而是特定點由特殊光照明。散射光被降低,樣品細節非常清晰。隨后,電腦控制拍攝多種照明的一系列照片,從而得到一個總體圖片。這種巧妙的照明方式甚至允許調節景深,電腦控制能對多種景深進行拍照,然后將其結合為三維圖像。“同時,這種顯微技術平面分辨率能達到145nm而軸向分辨率能達到400nm,”MarinaMione說。該技術能在幾秒內完成拍照,這樣細胞活動就不會引起清晰度下降。
研究人員使用徠卡體視顯微鏡,得到了活體多細胞生物的超分辨率3D圖像。DMD產生的多交點照明模式使研究者能排除焦外光干擾,從而使3D成像的樣品厚度比普通SIM成像厚八倍。研究人員每秒拍攝一次2D圖像,分辨率低至水平145nm軸向400nm。研究人員在活體轉基因斑馬魚胚胎超過45μm深處,得到了GFP標記的微管圖像。拍攝到了斑馬魚側線的動力學變化,并觀察到了包裹在膠原內的細胞中myosinIIA與F-actin相互作用。
研究人員基于一系列的顯微圖片,得到了微管運動的動態視頻。徠卡體視顯微鏡實驗中,對斑馬魚皮下約45µm的側線發育情況進行了超過60分鐘的觀察。斑馬魚通過側線感知水流刺激。這種生活器官的圖像也為研究脊椎動物細胞水平發育提供了寶貴信息。生活在淡水中的熱帶斑馬魚,作為一種遺傳學模型生物有許多優勢。其大小易于培養,同時也足夠研究人員分辨單獨的器官。斑馬魚的繁殖周期短,能產生大量后代。做為一種脊椎動物,它也具有一些和人類相同的生物學特性。
免責聲明
- 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。