摘要:無線溫度控制系統的設計在很大程度上能解決傳統溫度監控系統存在的問題。本文研究將無線接收模塊接收、遠程多點溫度采集和傳輸系統檢測到的多點溫度值轉移到主機顯示。該系統結構簡單,抗干擾性強,穩定性好,具有一定的實用價值。
關鍵詞:無線測溫裝置;電力系統;無線測溫;測溫傳感器;無線溫度傳感器;溫度傳感器
一、引言
電力系統對安全性有很高的要求,電力系統設備在長時間的使用過程中會老化或出現過熱現象,如果不能及時發現并加以解決,就可能導致嚴重的事故,須嚴格監視電力系統設備的工作狀態,其中對高壓開關柜觸點的溫度進行監測是非常重要的任務。溫度可以間接反映電氣設備的運行狀態,許多故障都會導致溫度異常,因此非常需要對電氣設備進行溫度監測。而在惡劣的生產條件下(例如發電機局部放電)很難使用常見的測量方法進行溫度監測,因此開發可靠且實用的多點溫度測量設備非常重要,無線技術可以用于克服現有有線溫度監控系統的許多缺點。
現有的成熟但研究不足的國外發電機狀態監測系統大多使用電纜接線監測,國內大多數研究應用也使用有線監測。無線傳感器網絡是基于IEEE 802.15.4技術標準和ZigBee網絡協議設計的無線數據傳輸網絡。本文主要分析發電機無線溫度監控系統的配置和設計,以使更多的人可以了解設計中某些概念帶來的便利。
二、系統總體設計
ZigBee無線溫度控制系統主要由ZigBee協調器、上位機STM32F103ZE和ZigBee終端三個大型模塊組成。無線溫度測量系統的目的是通過ZigBee通信協議將分布在不同位置的溫度值傳輸給PC,以便PC處理信息。在ZigBee終端節點上,溫度信息通過熱電偶收集,然后通過無線LAN傳輸給ZigBee協調器,協調器接收溫度信息,然后使用模糊比例積分微分算法計算控制量溫度。處理單元收集溫度傳感器的溫度,并通過通信單元發送溫度數據。由于溫度測量節點應具有體積小、功耗低、易于安裝和在多種環境下使用的特性,因此其使用電池供電。
三、測溫節點模塊設計
測溫節點模塊原理框圖如圖1所示,處理單元采用NEC單片機,由于NEC單片機具有低功耗特性,因此通信設備采用2.4 GHz頻段NRF24L01。該芯片支持點對點數據通信,在該模式數據通信的情況下,一個接收器工作在相同的頻帶中,并且發送六個接收器,同時將節點的ID人為地添加到通信協議中,從而可以擴展更多的多點通信。
圖1 測溫節點模塊原理框圖
顯示異常溫度測量點:通常將原始的兩點接地更改為單點接地,以處理發電機的異常溫度測量點,并更改每個通道測量回路的接地方法。它建立了溫度和負荷之間的相關性分析模型,根據負荷情況預測溫度變化趨勢,并為負荷控制提供決策依據。
四、無線測溫系統硬件設計
4.1系統總體框圖
整個溫度測量系統電路分為下位機和上位機兩部分。下位機負責定期收集溫度數據并將其發送給上位機。主機用于將接收到的溫度數據發送到與PC連接的通信控制器,框圖如圖2所示。
圖2 上位機與下位機總體框圖
4.2溫度采集端電路設計
一個無線收發器模塊和多個溫度傳感器構成溫度收集部分,從而完成多點溫度數據的采集和無線傳輸;另一個無線收發器模塊完成溫度數據的接收,并通過RS232接口模塊上載數據。STM32提供待機、睡眠和關機三種低功耗模式,用戶可以執行合理的系統優化。該模塊使用四線SPI接口,CS引腳連接到微控制器的RC0,INT連接到微控制器的RB0,WAKE連接到微控制器的RC1,RESET連接到微控制器的RC2。溫度采集器的發射頻率為428 439 MHz,發射信號為單頻信號,不同的頻率代表不同的信號。接收到信號后,通過信號放大和濾波處理,然后轉換為可識別的電信號以獲得溫度參數。
數據采集終端位于數據采集點,由溫度傳感器、微控制器和射頻收發器組成。它通過射頻與數據接收器進行無線通信。為了在設計中減小該系統的尺寸,采用了片上RF系統,并且在芯片上集成了一系列微控制器和RF收發器。
4.3無線收發電路設計
無線收發器芯片的類型很多,在設計過程中無線收發器芯片的選擇非常重要,選擇合適的無線收發器芯片可以降低開發難度,縮短開發周期并降低開發成本。無線傳感器節點和基站根據國際標準使用2.4 GHz頻率進行通信和數據傳輸。系統協調器使用RS232接口連接到PC,而RXD和TXD分別連接到微控制器的RX和TX引腳。協調器通過該接口將溫度數據從每個節點傳輸到上位機,上位機可以通過VB調試接口讀取上傳的數據,以達到監控目的。
在傳輸模式下,從壓控振蕩器(VCO)輸出的信號直接被傳輸到功率放大器(PA)。RF輸出由添加到DIO引腳[稱為頻移鍵控(FSK)]的數據控制。內部的T/R切換電路使天線的連接和匹配設計更加容易。PTR8000的工作電壓低,屬于低壓設備,在設計過程中就需要考慮這一點,STC89LE52微處理器用于連接設計,因此無須添加電平轉換電路,可以提高系統的穩定性。下行鏈路通過CAN總線或無線連接到溫度采集器,以從連接的傳感器獲取溫度信息,根據設置的參數分析溫度信息,確定是否產生警告信息。上行和主站系統之間的通信采用RS485接口,并根據特定協議實現數據傳輸。
五、無線測溫系統軟件設計
5.1系統的整體軟件框圖
系統在編程時采用模塊化的設計思想,將系統的主要功能模塊編譯為獨立的功能,由主程序調用,由于熱電偶安裝在發電機側并接地,因此從模塊側的接地中移除熱電偶信號可提高測量值。該系統的軟件設計采用模塊化、結構化的設計方法,整個程序由測溫模塊、無線收發模塊、與PC的串行通信模塊組成。軟件系統的整體數據處理流程如圖3所示。整個系統的所有部分都用于無線數據傳輸,因此,無線數據傳輸是整個系統軟件設計中重要的部分。
圖3 軟件系統的整體數據處理流程
ZigBee協調器程序的主要功能是設置局域網管理終端的節點以實現與STM32F03ZE的通信,而M32F03ZE主機程序主要實現與ZigBee協調器的通信并提供熟悉的人機界面。
5.2傳感器節點程序設計
該系統的無線傳感器節點選擇TI的CC2430,芯片本身具有八個A/D,處理器和無線通信模塊。傳感器節點由一個小型嵌入式系統組成,該系統由傳感器模塊、處理器模塊、無線通信模塊和能源供應模塊四部分組成。數據接收模塊
在從一個獲取模塊接收數據之后或發生通信超時之后結束與模塊的數據通信,并開始向下一個數據獲取模塊發送數據請求命令。當所有數據采集模塊都與數據接收模塊匹配時,經過一輪通信后,它會在數據采集模塊處重新啟動,以此類推。
5.3下位機與上位機軟件設計
系統的軟件設計包括上位機和下位機軟件設計。下位機軟件設計主要實現對上位機發送的命令的處理,該命令通過無線傳輸模塊發送到溫度采集模塊以選擇通道,然后發送無線接收信號,溫度參數被傳送到主機進行處理。
5.3.1下位機軟件設計
下位機的主程序實現系統的初始設置,定義PTR引腳,配置PTR并設置波特率。它從父計算機接收命令,確定父計算機選擇的信道,并根據該信道發送相應的無線電。相應的溫度采集模塊的通道地址采集溫度,然后通過無線傳輸模塊將溫度數據傳輸到接收接收板將通過串口接收到的溫度數據傳輸到上位機進行處理。
5.3.2上位機軟件設計
上位機軟件部分主要由數據編碼程序、數據解碼程序、初始化程序、數據發送/接收中斷處理程序、RS-485通信程序和上位機主程序組成。無線數據收發器中斷處理程序與下位機的相同,并且所有程序均以IARC語言完成。當通信控制器的輪詢信號點到達本機時,數據直接從存儲器中獲取并傳輸到通信控制器,然后上傳到PC。下位機定期上載每個測量點的溫度數據,并定期更新內存中的數據。其中,由于外部或儀器質量問題而引起的周跳對準確觀測產生嚴重影響,因為在處理數據時,它們通常少于10周,因此,可以使用關聯的軟件來解決小的循環跳躍問題并擴大循環滑移值。在測量過程中,由于存在接地電位差,并且熱電偶負極的電阻比接地電阻大得多,因此電流直接連接到熱電偶測量環路,并且在熱電偶負極的熱電偶上會疊加一個額外的壓降以進行測量。發生異常時,會產生較大的誤差值,因此DCS顯示值比實際溫度低。
六、實驗與分析
該系統主要用作子系統,以在正常或測試期間監視相關工作條件參數的變化。實時讀取串口采集模塊的全局變量,并實時顯示在界面上,以便操作人員或監控人員在進行相應的處理后及時進行分析。為了監視發電機線圈、軸承等的溫度而進行的實驗,鉑電阻傳感器由TPE橡膠包裹制成,經過高溫處理后,三根引線也以相同的方式處理。在發電機定子的三相繞組內部,每相內置兩個三線溫度傳感器Pt100,以監視繞組溫度。
在本實驗中,對發電機廠生產的發電機進行了測試,表1列出了一些監測溫度參量變化值。在表1中,當發電機組正常運行時,繞組的A相測量溫度在65℃~75℃之間,低于警報值(發電機繞組絕緣為F級);繞組B相的溫度在55℃~76℃之間,低于報警值,繞組C相的溫度在68℃~77℃之間,也低于報警值,滿足測試條件的參數值要求參數設置模塊實現各種監控狀態量的報警參數設置,并連接數據庫模塊,將相應的設置值存儲在參數表中,以備將來參考。事件歷史模塊主要調用數據庫不同時期的歷史數據和趨勢分析,以實現對每個狀態信號報警事件的查詢和顯示。
七、安科瑞測溫產品介紹
a.電池供電型無線溫度傳感器
安裝于發熱部位,采集溫度量并通過無線方式傳輸的傳感器。
目前無線溫度傳感器有三款:
b.CT感應取電無線溫度傳感器
安裝于斷路器觸頭、母排、電纜搭接點等大電流處,采集溫度量并通過無線方式傳輸的傳感器。
目前無線溫度傳感器有兩款:
安科瑞無線測溫就地顯示配置:
ASD300/320智能操控裝置可連接12路無線溫度傳感器,ARTM-Pn無線測溫裝置可連接18路無線溫度傳感器,無源(CT取電)方式為ATE300(捆綁式安裝),有源(電池供電)方式為ATE100(螺栓式安裝,主要用于電纜/銅排等螺絲固定的搭接點)和ATE200(表帶式,主要用于斷路器觸頭等接點捆綁安裝,因安裝較ATE100更方便,電纜/銅排等搭接點也常選用)。
無線測溫帶操顯功能(就地顯示)
Acrel-2000T/B無線測溫壁掛式監控設備,內存4G,硬盤128G,以太網口,顯示器12寸,分辨率800*600,可選Web平臺/App服務器,柜體尺寸480*420*200(單位mm),配置IPAD,安裝ACREL-2000/T軟件。就地實時顯示溫度分布以及報警等詳細參數。
無線測溫采集設備配置方案
八、結束語
為了在發電機組中應用發電機溫度監控,本文考慮了現場環境、技術要求、電磁兼容性、電路功耗等因素,以及設計計劃、設備選擇、硬件電路設計和生產、微控制器程序設計和調試。對無線溫度監測系統的配置和設計的研究就是這樣的例子,并且常規溫度監測系統原本不可能發生的許多問題正在被更方便地解決。數據處理和分析是通過上位機實現的,上位機軟件采用了可視化界面,使操作員操作起來更加直觀。在編程軟件的控制下,在PC的主軟件界面觸發命令按鈕,以將命令發送到接收器,接收到部分處理指令后,該指令將發送到下位機以選擇通道。溫度收集模塊在接收到命令后收集溫度并以無線方式收集溫度,將溫度數據發送到接收器。通過該系統能夠大大地提高工人的工作效率并基于ZigBee的收集模塊可以在工作條件下實時收集和顯示必要的更改。
【參考文獻】
[1]付興強,無線監控系統在電廠的應用
[2]蔣 燕,發電機無線測溫與監控系統研究
[3]安科瑞企業微電網設計與應用手冊2020.06版
相關產品
免責聲明
- 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。