【7月文獻戰報】Bioss抗體新增高分文獻精彩呈現
截止目前,引用Bioss產品發表的文獻共25951篇,總影響因子122927.88分,發表在Nature, Science, Cell以及Immunity等期刊的文獻共59篇,合作單位覆蓋了清華、北大、復旦、華盛頓大學、麻省理工學院、東京大學以及紐約大學等國際研究機構上百所。
我們每月收集引用Bioss產品發表的文獻。若您在當月已發表SCI文章,但未被我公司收集,請致電Bioss,我們將贈予現金鼓勵,金額標準請參考“發文章 領獎金”活動頁面。
近期收錄2023年7月引用Bioss產品發表的文獻共322篇(圖一,綠色柱),文章影響因子(IF) 總和高達2032.708,其中,10分以上文獻43篇(圖二)。
圖一
圖二
本文主要分享引用Bioss產品發表文章至Nature Nanotechnology, Immunity, Cancer Cell等期刊的6篇 IF>15 的文獻摘要,讓我們一起欣賞吧。
Molecular Cancer [IF=37.3]
DMEM basic(1×), Dulbecco's Modified Eagle Medium
作者單位:廣州醫科大學附屬第一醫院泌尿外科
Background
The encapsulation of circular RNAs (circRNAs) into extracellular vesicles (EVs) enables their involvement in intercellular communication and exerts an influence on the malignant advancement of various tumors. However, the regulatory role of EVs-circRNA in renal cell carcinoma (RCC) remains elusive.
Methods
The in vitro and in vivo functional experiments were implemented to measure the effects of circEHD2 on the phenotype of RCC. The functional role of EVs-circEHD2 on the activation of fibroblasts was assessed by collagen contraction assay, western blotting, and enzyme-linked immunosorbent assay (ELISA). The mechanism was investigated by RNA pull-down assay, RNA immunoprecipitation, chromatin isolation by RNA purification, luciferase assay, and co-immunoprecipitation assay.
Results
We demonstrated that circEHD2 was upregulated in RCC tissues and serum EVs of RCC patients with metastasis. Silencing circEHD2 inhibited tumor growth in vitro and in vivo....
ADVANCED FUNCTIONAL
MATERIALS [IF=19]
文獻引用抗體:bs-0465R
Anti-NFKB p65 pAb | IHC
作者單位:四川大學華西口腔醫院口腔疾病國家臨床研究中心口腔疾病國家重點實驗室
摘要:Skin photodamage, which is induced by ultraviolet (UV) radiation, is a prevalent cause of skin damage. In this study, a transdermal drug delivery system is developed for the topical treatment of skin photodamage, which is composed of tetrahedral framework nucleic acids (tFNAs) and lipoic acid (LA). The tFNAs-LA (TLA) nanocomposite exhibits excellent biocompatibility, as well as antioxidant, anti-apoptotic, and anti-inflammatory capabilities. tFNA, as a carrier, facilitates TLA for cell entry and skin penetration, while the loaded LA enhances the antioxidant and anti-inflammatory capabilities. In photodamaged human dermal fibroblast (HDF), TLA promotes proliferation and migration while inhibiting apoptosis activation and reactive oxygen species production. Moreover, TLA modulates apoptosis-related proteins and NF-κB signaling pathways, increasing cellular secretion while suppressing inflammatory responses in photodamaged HDF cells. In the in vivo experiment, topical application of TLA promotes tissue healing in photodamaged skin, and regulates the expression of inflammation and collagen-related proteins. It is suggested that the transdermal ability of TLA enables non-invasive therapy for skin photodamage, highlighting the potential of employing nucleic acid-based transdermal drug delivery systems for skin disease.
Bioactive Materials [IF=18.9]
Anti-CD86 pAb | IF
作者單位:中國醫學科學院和中國協和醫科大學生物醫學工程研究所天津生物材料研究重點實驗室
CHEMICAL ENGINEERING
JOURNAL [IF=15.1]
RIPA Lysis Buffer
作者單位:中國科學院深圳先進技術研究院生物醫藥與生物技術研究所人體組織器官退化研究中心
摘要:Mesenchymal stem cell-derived exosomes (MSC-Exos) have shown great potential in the areas of bone regeneration and treatment of age-related diseases. Engineered exosomes can integrate multiple functional components to achieve optimal, targeted therapeutic effects. This study combined large-scale generation, bone-targeting modification, and miR-26a loading for exosome-mimetics (EMs) to construct a cell-free delivery system that promotes bone regeneration with good biocompatibility. EMs were fabricated through sequential extrusion of MSCs and reached a 15-fold production yield compared to conventional exosome secretion. Systemic injection of Asp8-EM/miR-26a in mouse models accelerated bone-defect healing and prevented osteoporosis. The underlying mechanism involves miR-26a targeting glycogen synthase kinase-3β (GSK-3β) to induce β-catenin accumulation, thus activating Wnt signaling pathway and promoting bone regeneration. This study provides a feasible and effective strategy for modifying EMs to enhance bone regeneration.
CHEMICAL ENGINEERING
JOURNAL [IF=15.1]
作者單位:西南大學化學化工學院,發光分析與分子傳感教育部重點實驗室
摘要:Screening effective luminophore is always one of the most essential concerns in highly sensitive electrochemiluminescence (ECL) bioanalysis. Here, a new nanoflower-like iridium(III) J-aggregate (T-Ir) was prepared via nonionic surfactant assisted reprecipitation technique, which possessed good reductive-oxidative ECL activity and performed a strong ECL emission around 626 nm at low potential (−1.10 V) in the presence of potassium persulfate. Thus, T-Ir was employed as a luminophore and good biocompatible matrix to load large amounts of capture antibodies (Ab1). Meanwhile, gold nanoparticles capped cuprous oxide nanocubes (Cu2O@Au) were used as the efficient quencher to label detection antibodies (Ab2). While different dosages of carcinoembryonic antigen (CEA) were introduced via sandwich immunoreaction, the ECL intensity was significantly dropped due to electrochemiluminescence resonance energy transfer from energy donor (T-Ir) to the acceptor (Cu2O@Au), achieving the highly sensitive detection of CEA. The proposed immunosensor showed a linear concentration range from 1 fg·mL−1 to 80 ng·mL−1 with a low limit of detection of 0.93 fg·mL−1 (S/N = 3). It featured superior stability, selectivity, reproducibility and practicability. With the successful demonstration of hydrophilic iridium(III)-based nanomaterials, sensing strategies for various biomarkers detection in diseases diagnosis will flourish.
CHEMICAL ENGINEERING
JOURNAL [IF=15.1]
Anti-beta-Actin (Loading Control) pAb | WB
摘要:Arterial injuries, particularly in emergency situations or challenging environments, demand convenient, safe, and efficient repair strategies. Herein, we developed and evaluated a portable, suture-free, ultra-thin arterial repair membrane, referred to as the tissue-adhesive biphasic hydrogel membrane (TBHM). The TBHM was developed using electrospinning technology and a biphasic photosensitive hydrogel, composed of nitrobenzene-modified hyaluronic acid (HA-NB) and methacrylated polyvinyl alcohol (PVA-MA), with lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) as the photoinitiator. The TBHM was characterized by rapid bonding, high adaptability, and the ability to withstand a maximum burst pressure of 441.9 ± 25 mmHg. This membrane is capable of rapidly crosslinking and sealing a wound within 23 s. In vitro cell culture assays validated the biocompatibility and safety of the TBHM. Using a rabbit carotid artery rupture model, the TBHM allowed for immediate suture-free repair. Postoperative CT and Doppler ultrasound examinations confirmed restoration of normal anatomical structure and function. Histopathological analysis and molecular biology tests suggested that TBHM has potential anti-inflammatory and tissue regeneration-promoting properties. This study thus presented the TBHM as a promising novel strategy for the rapid, suture-free repair of arterial injuries, which may revolutionize emergency trauma and hemorrhage control scenarios.
※ 點擊這里查看往期單月Bioss抗體產品文獻引用列表