在部分發達國家,建筑物的能源消耗幾乎占總能源消耗的40%,其中,采暖和空調(HVAC)系統占了建筑能耗的一半。研究表明,大部分建筑能源通過玻璃幕墻和窗戶耗散[3]。為了避免建筑內部空間能量耗散,以低輻射玻璃(Low-E glass)為代表的節能窗備受關注。
低輻射玻璃或許對大眾而言還是一個比較新鮮的詞匯,但在建筑應用中,低輻射玻璃的使用可以達到“冬暖夏涼”效果,具有較佳的隔熱、保溫性能效果。
常見的低輻射玻璃主要通過濺射技術在玻璃表面沉積金屬銀制備。在部分降低玻璃可見光透過率(約降低至75%~80%)的情況下,其表面金屬銀鍍層能大大提高其中紅外反射率(10μm 波長反射率約60%),并降低其輻射率,從而實現室內外能量交換隔絕。
在低輻射材料的研發過程中,紅外光譜分析能有效幫助研究人員測試、分析材料光學性能,并指導材料優化方向。近日,清華大學團隊研發了一種基于一維金屬銀納米線的新型低輻射玻璃。借助布魯克VERTEX 70v傅立葉紅外光譜儀,研究人員發現這種銀納米線低輻射玻璃具有高于傳統低輻射玻璃的可見光透過率(圖1.a),和較高的中紅外反射率(10μm 波長反射率約60%,圖1.b)。在進一步優化和調控后,這種基于銀納米線的低輻射玻璃可以使建筑窗戶在冬季向外輻射降低約30%(圖2)。
布魯克VERTEX 70v傅立葉紅外光譜儀
[1] T. E. Johnson, ButterworthArchitecture, Boston (1991).
[2] S.M. A. Durrani, E. E. Khawaja, A. M. Al-Shikri, M. F. Al-kuhaili, Energ.Buildings 36 (2004) 891-898.
[3] S. Hoffmann, E. S. Lee, C. Clavero,Sol. Energ. Mat. Sol. C. 123 (2014) 65-80.
[4] S.Lin, H. Y. Wang, X. N. Zhang, et al. Nano Energy 62 (2019) 111-116.
立即詢價
您提交后,專屬客服將第一時間為您服務