細胞力產生和力傳遞綜合測量分析系統
跨細胞邊界作用力測量分析系統
1、背景和解決方案:
在生理和病理條件下,細胞本身產生的或細胞外基質 (ECM) 通過粘著斑 (FA) 和粘附連接 (AJ) 傳遞的機械力已知在調節各種細胞行為中發揮重要作用。
細胞胞力的產生和力的傳遞:
對于許多生物過程至關重要,量化通過基于E-鈣粘蛋白的粘附連接施加的細胞-細胞和細胞內力,將在生物學研究領域闡明與機械力響應相關的細胞功能方面發揮基礎性作用,
該系統為理解生物力學力在單個細胞、多細胞以及細胞-細胞/細胞-ECM 界面上的作用的提供了新方法,將為革新再生醫學、疾病建模和藥物發現的突破性技術打開大門,
闡明了細胞遷移、增殖、分化、重塑和機械感知其微環境的機制的許多方面。
2、該系統綜述:
該系統支持基于微柱陣列法、FLECS熒光彈性基底微圖案法、集成熒光微珠嵌入聚丙烯酰胺凝膠法、PDMS合規的薄硅膜法,集優棄劣進行力生成和應力傳遞分析,可以2D細 胞,也可以3D細胞嵌入水凝膠中,并結合時間依賴性 (4D)的細胞內源力產生與力傳遞量化分析實驗。可用于單個細胞、多細胞之間、細胞集落和融合細胞層(cell sheet)中的力生成和應力傳遞分析,為理解生物力在單個細胞、細胞集落、細胞-細胞/細胞-ECM界面上的作用提供了新方法,將為革新再生醫學、疾病建模和藥物發現的突破性技術打 開大門,闡明了細胞遷移、增殖、分化、重塑和機械感知其微環境的機制的許多方面,對于深刻理解許多生物過程至關重要。
該系統解決了從具有已知彈性的粘性基底測量的細胞力引起的變形重建細胞基質牽引力和細胞間和細胞內應力的逆問題。除了應力和力生成的標準測量之外,
還可以進行包括線性張力測量(一種專門用于細胞邊界的力傳遞測量),允許用戶設置所必要的分析參數,選擇感興趣的區域,檢查輸入參數和中間結果,
并計算描述力、應力及其分布的各種參數,允許非用戶對此類實驗進行全面評估,可讓您快速分析可視化大型數據集。
可選配時差顯微鏡活細胞工作站,為顯微鏡提供類似培養箱的氣體溫度濕度控制;
可選的共聚焦超高分辨率TIRF顯微鏡
2.2、測試方法:
2.2.1、細胞微柱陣列:
細胞主要黏附于與基底垂直微柱的上面,可以直接根據微柱的彎曲變形程度與方向測定與細胞接觸點牽引力的大小與方向。2.2.2、熒光微珠嵌入聚丙烯酰胺凝膠:
通過培養在具已知彈性軟基底(聚丙烯酰胺(PA)膠),細胞收縮過程中對基底產生的牽引力使基底產生變形,這種變形反映到熒光微珠的運動;用熒光顯微鏡采集熒光微珠的運動信息,經圖像處理后,得到基底的應變信息,然后通過一定的力學模型,定量反演出細胞的牽引力;細胞收縮或遷移過程中各個時刻的力分布就可以可視化在計算機屏幕上2.2.3、熒光彈性可收縮表面微圖案化多孔板高通量細胞收縮力檢測多孔板-24、96、384孔板:
2.2.4、合規PMDS基底多孔板:
采用軟彈性基底,通過細胞與彈性基底相互作用引起的基底變形來測定或計算細胞牽引力可定制剛度0.1kPa 至 100 kPa 的楊氏彈性模量、蛋白質涂層
2.3、適用樣品:
2D單個細胞、3D凝膠包埋的細胞、細胞集落和融合細胞層中的力生成和應力分析,細胞收縮力、細胞之間相互用力、細胞與ECM之間相互用力、跨細胞邊界作用力、平均法向應力和剪切應力
2.4、典型測試應用:
有許多不同的方法可以測量力的產生和應力。在這里,您可以找到可以使用該程序計算的數量的概覽。
2.4.1、基材變形
zui簡單的方法是總結細胞附著的基底表面的變形。變形取決于基材的機械性能。
2.4.2、應變能
2.4.3、收縮力
收縮力定義為牽引力向一個點(稱為力中心)的投影之和。因此,如果力都已經指向一個中心點,則收縮性很高。局部相反的力和不指向力震中的力對收縮性沒有貢獻。能夠以力似乎源自單個點的方式協調其力產生的細胞或細胞群可以獲得高收縮性,同時消耗相對少量的應變能。
這在圖13中進一步說明。案例 A 代表具有兩個具有高度協調力生成的細胞的細胞集落,案例 B 代表具有協調性的細胞。在情況 B 中,每個細胞自行產生收縮力。因此,如果我們假設情況 A 和 B 中的應變能相等,則情況 B 的收縮性較低。
綜上所述:應變能是總力產生的量度,而收縮性是協調力產生的量度。
2.4.4、平均法向應力和剪切應力
壓力描述了在細胞或細胞片內部傳遞的力。對于細胞表中的任何給定點,應力由具有 4 個分量的張量定義。如圖 14所示,每個分量代表將作用于從細胞片切出的正方形邊緣的力。
我們可以區分兩種類型的應力:剪切應力,一種平行于該正方形邊緣作用的力,以及法向應力,一種垂直于該正方形邊緣作用的力。由于幾何原因,應力張量的兩個剪切分量必須相同。普通組件不是這種情況。由于法向應力是否主要來自 x 或 y 方向對我們的分析沒有意義,因此計算兩個分量的平均值更有用。這留下了兩個應力:剪應力和平均法向應力。這些壓力可以在整個細胞集落區域進行平均。
2.4.5、應力分布
應力分布可以用變異系數 (CV) 來描述,即用平均法向應力或剪切應力的平均值歸一化的標準偏差。
2.4.6、跨細胞邊界作用的力
如上所述,應力張量可用于計算作用于細胞集落邊界的力。這種力稱為線張力,有一個直接的解釋:想象一下,您實際上要沿著兩個細胞之間的邊界切割細胞片。如果細胞繼續產生力,則該切口的邊緣會漂移開或開始重疊,因為您剛剛切割了將兩個邊緣固定在一起的材料。為了將兩個邊緣保持在切割之前的位置,您需要在邊緣施加一個力。這個力,由切割長度歸一化,是線張力。
線張力是具有 x 和 y 分量的向量。與應力類似,它可以分為剪切分量(平行于切口作用的力)和法向分量(垂直于切口作用的力)。兩者都有助于線張力的大小(線張力矢量的長度)。
使用該系統計算細胞間應力,以獲得面內二維應力張量。簡而言之,應用牛頓定律要求的直接力平衡,為我們提供單層內的二維應力張量,通過旋轉單層內每個點的坐標系。此外,在單層內的每個點,我們計算了平均正常細胞間應力 (σ max + σ min )/2 和zui大剪切細胞間應力 (σ max -σ min )/2
跨細胞邊界作用力測量分析系統