產品簡介
IC(internal circulation)反應器是厭氧反應器,即內循環厭氧反應器,相似由2層UASB反應器串聯而成,用于機高濃度廢水,如,玉米淀粉廢水、檸檬酸廢水、啤酒廢水、土豆加工廢水、酒精廢水。、
山東明基環保設備有限公司 |
—— 銷售熱線 ——
15963635951 |
IC厭氧反應器
厭氧反應四個階段
一般來說,廢水中復雜機物物料比較多,通過厭氧分解分四個階段加以降解:
(1)水解階段:高分子機物由于其大分子體積,不能直接通過厭氧菌的細胞壁,需要在微生物體外通過胞外酶加以分解成小分子。廢水中的機物質比如纖維素被纖維素酶分解成纖維二糖和葡萄糖,淀粉被分解成麥芽糖和葡萄糖,蛋白質被分解成短肽和氨基酸。分解后的這些小分子能夠通過細胞壁進入到細胞的體內進行下一步的分解。
(2)酸化階段:上述的小分子機物進入到細胞體內轉化成更為簡單的化合物并被分配到細胞外,這一階段的主要產物為揮發性脂肪酸(VFA),同時還部分的醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等產物產生。
(3)產乙酸階段:在此階段,上一步的產物進一步被轉化成乙酸、碳酸、氫氣以及新的細胞物質。
(4)產甲烷階段:在這一階段,乙酸、氫氣、碳酸、甲酸和甲醇都被轉化成甲烷。
但在水解階段我們不需要過多的COD去除效果,而且在一個反應器中你很難嚴格的把厭氧反應的幾個階段區分開來,一旦停留時間過長,對工程的性就不太。如果就單的水解反應針對生活污水來說,COD可以控制到0.1的去除效果就可以了。
把這些參數和給定的條件代入到水解動力學方程中,可以得到停留水解停留時間:
T=13.44h這對于水解和后續階段處于一個反應器中厭氧處理單元來說是一個很短的時間,在實際工程中也完可以實現。如果條件的地方我們可以適當提高廢水的反應溫度,這樣反應時間還會大大縮短。而且一般對于城市污水來說,長的排水管網和廢水中本生的生物多樣性,所以當廢水流到廢水處理場時,這個過程也在很大程度上完成,到目前為止還沒看到關于水解作為生活污水厭氧反應的限速報道。
發酵酸化反應發酵可以被定義為機化合物既作為電子受體也作為電子供體的生物降解過程,在此過程中機物被轉化成以揮發性脂肪酸為主的末端產物。
酸化過程是由大量的、多種多樣的發酵細菌來完成的,在這些細菌中大部分是專性厭氧菌,只1%是兼性厭氧菌,但正是這1%的兼性菌在反應器受到氧氣的沖擊時,能迅速消耗掉這些氧氣,保持廢水低的氧化還原電位,同時也保護了產甲烷菌的運行條件。
酸化過程的底物取決于厭氧降解的條件、底物種類和參與酸化的微生物種群。對于一個穩態的反應器來說,乙酸、二氧化碳、氫氣則是酸化反應的主要產物。這些都是產甲烷階段所需要的底物。
在這個階段產生兩種重要的厭氧反應是否正常的底物就是揮發性脂肪酸(VFA)和氨氮。VFA過高會使廢水的PH下降,逐漸影響到產甲烷菌的正常進行,使產氣量減小,同時整個反應的自然堿度也會較少,系統平衡PH的能力減弱,整個反應會形成惡性循環,使得整個反應器終失敗。氨氮它起到一個平衡的,一方面,它能夠中和一部分VFA,使廢水PH具更大的緩沖能力,同時又給生物體合成自生生長需要的營養物質,但過高的氨氮會給微生物帶來毒性,廢水中的氨氮主要是由于蛋白質的分解帶來的,的生活污水中含20-50mg/l左右的氨氮,這個范圍是厭氧微生物非常理想的范圍。
另一類產生甲烷的微生物是由氫氣和二氧化碳形成的。在正常條件下,他們大約占30%左右。其中約一般的嗜氫細菌也能利用甲酸產生甲烷。主要的產甲烷過程反應:
CH3COO-+H2O->CH4+HCO3- ΔG’0=-31.0KJ/MOL
HCO3-+H++4H2->CH4+3H2O ΔG’0=-135.6KJ/MOL
4CH3OH->3CH4+CO2+2H2O ΔG’0=-312KJ/MOL
4HCOO-+2H+->CH4+CO2+2HCO3- ΔG’0=-32.9KJ/MOL
IC厭氧反應器
山東明基設備限是集技術研發、項目設計、設備、工程安裝、調試運營、 技術咨詢服務為一體的水處理。我根據水處理市場的需求,借鑒水處理產品優秀的設計理念,繼而研發創新,產品自投入市場以來,深受廣大消費者信賴。