讓“持續發展”給森林,還大地綠蔭片片;讓“珍惜瀕危物種”給動物,還生命生機盎然;讓“數星星”給夜空,還記憶繁星點點。
黃岡一體化污水處理設備結實耐用
優點
1、抗沖擊負荷的能力強,接觸氧化法的平均停留時間在6小時以上。
2、具有脫氮除磷能力,并可以通過調節設備的構造,達到處理工業廢水,生活污水,城市污水的能力。;
3、接觸氧化池內的填料多為組合軟填料,質輕、高強、物理化學性質穩定,比表面積大,生物膜附著能力強,污水與生物膜的接觸效率高。
4、接觸氧化池內采用曝氣器進行鼓風曝氣,使纖維束不斷漂動,曝氣均勻,微生物生長成熟,具有活性污泥法的特征。
5、出水水質穩定,污泥產量少并易于處理。
6、潛水泵中可設于設備之中,減少工程投資。
7、設備可設于地面上,也可埋于地下。埋于地下時,上部覆上可用于綠化,廠區占地面積少,地面構筑物少。
8、易于完成自動控制,管理操作簡單。
9、設備可以連接在汽車上做成移動式一體化污水處理設備。
臭氧的發生及常用濃度
臭氧的半衰期僅為30-60min。由于它不穩定、易分解,無法作為一般的產品貯存,因此需在現場制造。用空氣制成臭氧的濃度一般為10-20mg/L,用氧氣制成臭氧的濃度為20-40mg/L。含有1%-4%(質量比)臭氧的空氣可用于水的消毒處理。
產生臭氧的方法是用干燥空氣或干燥氧氣作原料,通過放電法制得。另一個生產的臭氧的方法是電解法,將水電解變成氧元素,然后使其中的自由氧變成臭氧。
使用電解系統生產臭氧的主要優點是:
① 沒有離子污染;
② 待消毒處理的水是用來產生臭氧的原料,因此沒有來自系統外部的其他污染;
③ 臭氧在處理過程中一生成就被溶解,即可以用較少的設備進行臭氧處理。
若在加壓條件下,可生產出較高濃度的臭氧。
黃岡一體化污水處理設備結實耐用
結構特點及工作原理
1、結構組成:①槽體 ②微氣泡發生器 ③容器裝置 ④配藥裝置 ⑤排泥槽 ⑥出水管
2、結構特點:由于槽體制造上的特點,它是以高效率的溶氣機理,經分置的微氣泡發生器,將原水、溶氣水及藥品(一切線旋流進入)得以快速結合、釋放、絮凝、升浮、微氣泡均勻、密度大,至槽體中上部時,升浮速度趨于穩定零速度,形成立體微循環狀態,保證了微氣泡與廢水中的絮凝體充分接觸、結合。不論在結合過程中或已經結合的絮凝物,都不會受外力而被破壞其結合,絮凝物浮層穩定。
3、工作原理:
一體化污水處理設備的厭氧消化技術主要用于處理有機廢物
高濃度有機廢水、農業廢棄物、餐廚垃圾、剩余污泥等;反應同時產生的生物能源為緩解氣候變化和保證能源的可持續 性提供了新的選擇。相比好氧生物處理,厭氧消化具有高有機負荷、剩余污泥量小、綠色能源回收以及較低的運行和維護費用等優勢,得到廣泛應用并迅速發展。
穩定的厭氧消化過程主要依賴于水解發酵菌、產酸菌和產甲烷菌3種微生物的正常生理活動。溫度對地埋式一體化污水處理設備中微生物的生長速率和FAN濃度均有影響,通常在保證產甲烷菌活性的前提下,厭氧消化工藝選擇在中溫(30~40℃)和高溫(50~60℃)兩個范圍下進行。研究者發現,高溫產甲烷 菌相比中溫產甲烷菌對氨抑制具有更強的耐受能力。
地埋式一體化污水處理設備中厭氧需要調節碳氮比,過高的碳氮比會引起系統氮源的不足,無法充分消耗碳源;低碳氮比又可能造成氨的積累而抑制厭氧消化,因而選擇合適的碳氮比對厭氧反應器氨抑制作用及其穩定運行至關重要。
微生物的強化在厭氧消化技術中尤為重要,馴化接種是增強產甲烷菌氨適應性的有效途徑之一。隨著系統內氨濃度緩慢增加,微生物可以逐漸適應較高氨濃度的環境。通常,TAN質量濃度為3000mg/L時可*抑制產甲烷菌,但經過馴化的產甲烷菌可以在高于3000mg/L的環境中生存。另外在地埋式一體 化污水處理設備的厭氧反應器內添加不同的惰性材料(黏土、沸石和活性炭等),通過吸附、離子交換、擴大微生物菌落比表面等作用,能夠減輕氨抑制、穩定厭氧 消化過程。
我公司經過長時間對地埋式一體化污水處理設備案例的研究,發現通過微生物馴化增強氨抗性是繼續發展解決氨抑制問題的主要途徑,未來研究重點可偏向于縮短馴化時間、提純優良甲烷菌種、穩定接種方式等。