HYDAC賀德克傳感器*
HYDAC賀德克傳感器的靜態特性是指對靜態的輸入信號,HYDAC傳感器的輸出量與輸入量之間所具有相互關系。因為這時輸入量和輸出量都和時間無關,所以它們之間的關系,即傳感器的靜態特性可用一個不含時間變量的代數方程,或以輸入量作橫坐標,把與其對應的輸出量作縱坐標而畫出的特性曲線來描述。表征傳感器靜態特性的主要參數有:線性度、靈敏度、遲滯、重復性、漂移等。
HYDAC賀德克傳感器*
1、線性度:指傳感器輸出量與輸入量之間的實際關系曲線偏離擬合直線的程度。定義為在全量程范圍內實際特性曲線與擬合直線之間的zui大偏差值與滿量程輸出值之比。
2、靈敏度:靈敏度是傳感器靜態特性的一個重要指標。其定義為輸出量的增量與引起該增量的相應輸入量增量之比。用S表示靈敏度。
3、遲滯:傳感器在輸入量由小到大(正行程)及輸入量由大到?。ǚ葱谐蹋┳兓陂g其輸入輸出特性曲線不重合的現象成為遲滯。對于同一大小的輸入信號,傳感器的正反行程輸出信號大小不相等,這個差值稱為遲滯差值。
4、重復性:重復性是指傳感器在輸入量按同一方向作全量程連續多次變化時,所得特性曲線不*的程度。
5、漂移:傳感器的漂移是指在輸入量不變的情況下,傳感器輸出量隨著時間變化,此現象稱為漂移。產生漂移的原因有兩個方面:一是傳感器自身結構參數;二是周圍環境(如溫度、濕度等)。
6、分辨力:當傳感器的輸入從非零值緩慢增加時,在超過某一增量后輸出發生可觀測的變化,這個輸入增量稱傳感器的分辨力,即zui小輸入增量。
7、閾值:當傳感器的輸入從零值開始緩慢增加時,在達到某一值后輸出發生可觀測的變化,這個輸入值稱傳感器的閾值電壓。
HYDAC賀德克傳感器*
hydac Germany HYDAC sensor principle and application of the dynamic characteristics of the sensor HYDAC Germany
The so-called dynamic characteristics, when the input means is changed, it is characteristic of the sensor output. In practice, the dynamic characteristics of the sensor HYDAC its response to some common standard input signal to represent. This is because the sensor's response to the standard input signal is easily determined experimentally, and in response to its standard input signal the presence of a certain relationship between its response to any input signal, often can be presumed to know the former to the latter. The most commonly used standard input signal and sine signal two kinds of step signal, so the dynamic characteristics of the sensor is also used HYDAC step response and frequency response is represented.
Linearity Germany HYDAC HYDAC sensors
Under normal circumstances, the actual output of the sensor is static characteristic curves rather than straight lines. In practice, the instrument has a uniform scale readings, commonly fit a straight line approximation to represent the actual characteristic curve linearity (nonlinear error) is the degree of approximation of a performance. Fitting a straight line to select a variety of methods. As the theory of linear zero input and full scale output points connected as fitting a straight line; or the square of the deviation of each point on the curve and the smallest theoretical straight line as fitting a straight line, this is called the linear least squares fitting quasi co-linear.