開學雙重福利!在線紅外和拉曼免費試用邀請
作為先進的化學和生物反應分析工具,在線紅外和在線拉曼技術已被廣泛應用于反應機理和動力學、催化、聚合、流動化學、生物反應與過程、結晶與顆粒、模擬和自動化等諸多研究領域。在過去數十年間,國內外頂尖科學家和團隊利用梅特勒托利多(METTLER TOLEDO)的在線紅外(ReactIR™)和在線拉曼(ReactRaman™)技術開展了諸多科研項目,并發表了許多優秀的科研成果和文獻。值此開學之際,我們為您將這些科研成果整理成冊,以期可以幫助您更深入地了解相關領域的最新動向。
填寫反饋問卷或點擊文末“閱讀全文”可免費獲取文獻資料合集《化學領域當前的研究課題:過程分析技術的作用》
為進一步助力學術研究和科研成果轉化,梅特勒托利多推出在線反應分析工具(PAT)限時免費試用活動。試用我們的在線紅外和在線拉曼等設備,您可以充分發揮科學創新力,同時也可以更高效、準確地獲得您所需的實驗數據和信息。與此同時,我們為您提供專業的技術支持和相關領域文獻,幫助您充分理解和應用在線反應分析工具,助力您的研究工作。
心動不如行動,填寫上述反饋問卷申請試用吧!
在線紅外光譜儀 ReactIR™
ReactIR可以幫助科學家研究化學反應隨時間的連續變化,提供反應起點、終點、轉變、動力學、機理和反應途徑等明確的反應信息。通過實時的原位中紅外監測系統,ReactIR能夠在反應過程中跟蹤監測關鍵反應組分的濃度變化,從而幫助科學家深入理解反應過程,便于對化合物、合成路線和化學工藝的開發研究。
ReactRaman™光譜儀使科學家能夠實時測量反應和過程趨勢,提供關于動力學、多晶型轉換、機理以及關鍵過程參數(CPP)影響的高度具體化的信息。使用ReactRaman,用戶可以直接跟蹤固體和液體反應物的濃度、中間體、產物和晶型在實驗過程中的變化。
試用活動申請時間:2024年3月1日–2024年4月30日
試用范圍:高校及科研院所
試用方式:填寫上述申請表后,我們將聯系您預約試用時間并提供技術支持
利用在線反應分析工具,科學家發表了眾多高質量的文章,雜志包括Science、JACS、Green Chemistry、Nature Communications、ACS Catal、Angew等國際學術期刊。下面是部分相關文獻:
1. Sharma, H.A., Essman, J.Z. and Jacobsen, E.N. (2021). Enantioselective Catalytic 1,2-Boronate Rearrangements. Science, 374, 6568, 752-757. https://doi.org/10.1126/science.abm0386.
2. Rezazadeh, S. Photoredox-Nickel Dual-Catalyzed C-Alkylation of Secondary Nitroalkanes: Access to Sterically Hindered α-Tertiary Amines, J. Am. Chem. Soc., 145, 8, 4707–4715. https://doi.org/10.1021/jacs.2c13174.
3. Nielsen, M.M. Stereoselective O-Glycosylations by Pyrylium Salt Organocatalysis. Angew. Chem. 134, 6, e202115394. https://doi.org/10.1002/ange.202115394.
4. Rittinghaus, R.D. Active in Sleep: Iron Guanidine Catalyst Performs ROP on Dormant Side of ATRP. Angew Chem., 60, 40,21795- 21800. http://dx.doi.org/10.1002/anie.202109053.
5. Na, H. Deciphering the Mechanism of the Ni-Photocatalyzed C–O Cross-Coupling Reaction using a Tridentate Pyridinophane Ligand. Nat Commun 13, 1313. https://doi.org/10.1038/s41467-022-28948-8.
6. Xu, J. Diblock Dialternating Terpolymers by One-Step/One-Pot Highly Selective Organocatalytic Multimonomer Polymerization. Nat Commun. 12,7124. https://doi.org/10.1038/s41467-021-27377-3.
7. Köhnke, K, Wessel, N. Operando Monitoring of Mechanisms and Deactivation of Molecular Catalysts. Green Chem., 24, 1951-1972. https://doi.org/10.1039/D1GC04383H.
8. Deem, M.C. Best Practices for the Collection of Robust Time Course Reaction Profiles for Kinetic Studies. ACS Catal., 13, 2, 1418–1430. https://doi.org/10.1021/acscatal.2c05045.
9. Milošev, I.. Siloxane Polyacrylic Sol-Gel Coatings with Alkly and Perfluoroalkyl Chains: Synthesis, Composition, Thermal Properties and Long-Term Corrosion Protection. Applied Surface Science, 574, 151578. https://doi.org/10.1016/j.apsusc.2021.151578.
10. Januszewski, R. The Effect of Organosilicon Modifier Structure on the Efficiency of the Polybutadiene Hydrosilylation Process. Catal. Sci. Technol., 10, 7240–7248. https://doi.org/10.1039/D0CY01376E.
11. Zhang, G. Enhanced Immunotherapy Based on the Synergistic Click Reaction-Mediated Chemotherapy and Photothermal Therapy for Efficient Tumor Inhibition. Chemrxiv. (華南理工大學、香港大學、香港科技大學、南華大學、南開大學)
12. Chao, X. Tuning the Olefin-VOCs Epoxidation Performance of Ceria by Mechanochemical Loading of Coinage Metal. Journal of Hazardous Materials, 441,10, 129888. https://doi.org/10.1016/j.jhazmat.2022.129888. (中山大學)
13. Zhang, Z. Kinetic Insights into Cyanosilylation of Aldehydes Catalyzed by a Covalently Bridged Dinuclear (Salen)titanium Complex.Asian J. Org. Chem. 11, 2, https://doi.org/10.1002/ajoc.202100795. (華東理工大學)
14. Zhang, Y-F. Facile Synthesis, Structure and Properties of CO2- Sourced Poly(thioether-Co-Carbonate)s Containing Acetyl Pendants via Thio-Ene Click Polymerization. Polym. Chem., 13, 201–208. https://doi.org/10.1039/D1PY01477C. (大連理工大學;湖南大學)
15. Yan, Z. Hydrolysis Mechanism of Water-Soluble Ammonium Polyphosphate Affected by Zinc Ions. ACS Omega, 8,20, 17573–17582. https://doi.org/10.1021/acsomega.2c07642. (四川大學)
16. Zhang, Y-Y. Perfectly Alternating Copolymerization of CO and Epoxides to Aliphatic Polyester Oligomers via Cooperative Organoboron-Cobalt Complexes. Macromolecules, 54, 9427-9436. https://doi.org/10.1021/acs.macromol.1c01324. (浙江大學)
17. Li, B. Metal-Free Polycycloaddition of Aldehyde-Activated Internal Diynes and Diazides Toward Post-Functionalizable Poly(formyl-1,2,3-Triazole)s Polym. Chem., 11, 3075–3083. https://doi.org/10.1039/D0PY00193G. (華南理工大學)
18. Fan, P. Dynamic Covalent Bonds of Si-OR and Si-OSi Enabled A Stiff Polymer to Heal and Recycle at Room Temperature. Materials, 14,2680. https://doi.org/10.3390/ma14102680. (中山大學)