詳細介紹
測量粘度的方法很多,如振動法、 毛細管法、旋轉法、落球法、 錐板法等, 在眾多的測量方法中,振動弦方法結構簡單、適用范圍廣、溫度范圍和壓力范圍寬,廣受研究人員的關注。
隨著研究的深入和電子技術的發展,到目前為止,無論是理論模型、影響因素分析還是實驗裝置系統,振動弦方法都得到飛速的進步,其測量準確度得到進一步的提升,應用領域得到快速擴展,同時成為 IATP(International Association for Transport Properties)建立高粘度標準物質的測量方法之一。
粘度測量原理
振動弦理論的基本模型是一根無線長圓截面的絲在無限大流體中做橫向振動,根據流體對振動的阻尼作用來測量粘度。
振動弦的振動通過電磁感應實現,將金屬絲放置在磁場中,給金屬絲通入正弦電流,在磁場的作用下金屬絲會做橫向振動,在磁場中振動的金屬絲又會產生感應電壓,產生的感應電壓和金屬絲的振動速度相對應,通過測量振動絲的振動信號,利用非線性回歸將共振曲線擬合成幅值和相位的表達式,就可以得到流體的粘度值。
方法特點
振動弦粘度計以固體的振動特性(含有液體,或者周圍包圍有液體)來獲得流體粘度和密度,由于這種方法不需要流體的整體運動,因而可以使得結構設計的很緊湊,且其由于粘性耗散產生的熱量很小, 這種方法只需要測量質量、長度和時間這幾個基本物理量,因此可以獲得高的測量精度。
振動弦法具有一些特別的優勢,因而受到國際流體粘度研究領域的廣泛關注:
工作方程嚴謹: 振動弦的傳感器部分擁有一系列嚴謹的工作方程,以及有明確含義的物理參數;
絕對測量數據: 理論上可以實現絕對測量,不需要任何標定(已經有實驗室實現);
消除張力影響: 振動弦裝置不受表面張力和界面張力的影響,而這些影響在毛細管設備中較為常見;
避免逐級標定: 振動弦系統在其可以應用的測量范圍內,均可以避免逐級標定;
自動化程度高: 由于測量量基本為電測量,理論上振動弦法可以實現全自動化測量;
測試腔體密閉: 振動弦方法可應用于封閉式結構,滿足不同溫度、不同壓力的條件控制,從而獲得高精度的粘溫曲線、粘壓曲線,克服了其他方法開放式設計無法耐壓、控壓的不足,有效地測量工質在特定溫度、壓力條件下的粘度數據。
測量準確
為了檢驗儀器準確度及可靠性,西安夏溪電子科技有限公司利用甲苯對儀器進行了檢驗,并將測試數據與美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)推薦的理論值進行比較。結果表明, VM 系列粘度計的準確度可以高達 1%以內,全量程范圍內小于 3%,測量結果準確可靠。
粘度測量性質
獲得多種性質
粘度密度: 可同時獲得粘度和密度;
粘溫曲線: VM 系列粘度密度計測溫范圍寬,可以研究試樣在不同溫度下的粘度數據, 從而獲得不同溫度范圍內的粘度-溫度曲線;
粘壓曲線: 配合壓力控制模塊,可以獲得 0.1~20 MPa 范圍內的粘度-壓力曲線;
粘溫系數: 根據粘溫曲線計算得出;
粘壓系數: 根據粘壓曲線計算得出。
操作方便 適用廣泛
測試軟件
界面簡單清晰,測試流程明確,使得用戶在無任何專業知識的前提下均能準確的進行操作,獲得可靠的被測流體粘度實驗數據,如配合自動進樣、自動控溫,可以幫助用戶更加有效的降低人力成本。
操作自動化
VM 系列粘度計操作簡單,可以實現全自動化,用戶只需要通過簡單的軟件操作,即可實現自動控溫測溫,自動加壓測壓, 自動進樣(選配進樣系統), 測試數據自動分析等全自動化實驗步驟。
適用廣泛
可適用于各類油品(導熱油、潤滑油、壓縮機油、冷凍機油、真空泵油、液壓油、硅油等)、液體燃料(煤油、柴油、含氧燃料、各種新型替代燃料等)、各種制冷劑、水溶液、醇類、甲苯等多種液體的測量。