技術文章
口腔潤滑摩擦力測試系統文獻
閱讀:1861 發布時間:2020-1-20A study of saliva lubrication using a compliant oral mimic
Due to ethical issues and the difficulty in obtaining biological tissues, it is important to find synthetic elastomers
that can be used as replacement test media for research purposes. An important example of this is friction testing
to understand the mechanisms behind mouthfeel attributes during food consumption (e.g. syrupy, body and
clean finish), which requires an oral mimic. In order to assess the suitability of possible materials to mimic oral
surfaces, a sliding contact is produced by loading and sliding a hemispherical silica pin against either a polydimethyl
siloxane (PDMS), agarose, or porcine tongue sample. Friction is measured and elastohydrodynamic
film thickness is calculated based on the elastic modulus of the samples, which is measured using an indentation
method. Tests were performed with both saliva and pure water as the lubricating fluid and results compared to
unlubricated conditions.
PDMS mimics the tongue well in terms of protein adhesion, with both samples showing significant reductions
in friction when lubricated with saliva versus water, whereas agarose showed no difference between saliva and
water lubricated conditions. This is attributed to PDMS's eOeSi(CH3)2- group which provides excellent adhesion
for the saliva protein molecules, in contrast with the hydrated agarose surface. The measured modulus of
the PDMS (2.2 MPa) is however significantly greater than that of tongue (3.5 kPa) and agarose (66–174 kPa).
This affects both the surface (boundary) friction, at low sliding speeds, and the entrained elastohydrodynamic
film thickness, at high speeds.
Utilising the transparent PDMS sample, we also use fluorescence microscopy to monitor the build-up and flow
of dyed-tagged saliva proteins within the contact during sliding. Results confirm the lubricous boundary film
forming nature of saliva proteins by showing a strong correlation between friction and average protein intensity
signals (cross correlation coefficient=0.87). This demonstrates a powerful method to study mouthfeel mechanisms.
1. Introduction
Due to ethical issues and the difficulty in obtaining biological tissues,
it is necessary to find synthetic elastomers that can be used as
replacement test media for research purposes. A key example of this is
friction testing to understand the mechanisms behind mouthfeel attributes
during food consumption (e.g. syrupy, body and clean finish),
which requires an oral mimic. This is important since the acceptability
of food and beverages depend critically on their mouthfeel, which results
from tribological and rheological processes (Stokes, Boehm, &
Baier, 2013). Moreover, a poor understanding of these processes
currently limits the development of healthy formulations that can replicate
foods while reducing ingredients such as fat (Dresselhuis, 2008),
(Drewnowski, 1997). When mimicking the oral mucosa for these in
vitro tribological studies of foods and beverages, consideration must be
made of the mucosal pellicle. Like the acquired enamel pellicle on teeth,
this is a subset of salivary proteins that specifically bind to oral epithelial
cells (Gibbins, Proctor, Yakubov, Wilson, & Carpenter, 2014).
Unlike the acquired enamel pellicle, the mucosal pellicle is mostly
composed of mucins and secretory IgA. This layer is driven by the interaction
of salivary mucins (muc5b and muc7) with membrane-bound
mucin (muc1) expressed on oral epithelial cells (Vijay, Inui, Dodds,
Proctor, & Carpenter, 2015). Mucins are large highly glycosylated
proteins which retain considerable amounts of water when initially
secreted (Corfield, 2015). Thus, in addition to saliva lubricating the
surface, there is also a hydrogel-like layer adjacent to the surface. All
too frequently however, saliva is omitted from in vitro tests as it was
cited as being too inconvenient to collect in sufficient quantities or
considered too complex to give consistent results.
Previously, the oral mucosa was mimicked using glass or other hard
substrates (Chen & Stokes, 2012). More recently elastic substrates have
been used which introduced soft-tribology with Hertzian mechanics. In
an important investigation by Dresselhuis et al. (Dresselhuis et al.,
2007), the surface characteristics of pig tongue were compared with
those of PDMS. Their investigation concluded that PDMS showed dissimilarities
in surface characteristics to those of a tongue surface, since
the oral mucosa and PDMS rubbers, even with a structured surface to
reproduce biological scenarios, were not interchangeable in tribological
experiments. However, this widely cited paper has a critical shortcoming
in that it used only emulsion as the lubricant and saliva interactions
were completely ignored. Other work carried out on biological
surfaces, but without the presence of saliva include studies by Adams
et al. (Adams, Briscoe, & Johnson, 2007) and Tang et al. (Tang &
Bhushan, 2010), (Tang, Bhushan, & Ge, 2010) into the lubricating
properties of human skin. Adams et al. used a smooth glass or polypropylene,
spherical tipped probe sliding against a human forearm,
while Tang et al. employed shaved porcine skin. Results were reported
for a range of lubricating conditions, but repeatability of testing was
difficult to achieve. Prinz et al. (Prinz, de Wijk, & Huntjens, 2007) did
investigate the frictional properties between two pig mucosal surfaces
lubricated with human saliva. However, scant data is presented and no
comparison is made between different component materials.
For the majority of research, crosslinked polydimethyl siloxane
(PDMS) has been chosen because of its elastic properties, easy handling
and relatively low stiffness, comparable to soft biological tissues (Cox,
Driessen, Boerboom, Bouten, & Baaijens, 2008; Khanafer, Duprey,
Schlicht, & Berguer, 2009). PDMS is utilized as one (de Vicente, Stokes,
& a Spikes, 2006), (Malone, Appelqvist, & Norton, 2003), (Tang &
Bhushan, 2010), (Tang et al., 2010) or both (Stokes, Bongaerts, &
Rossetti, 2007), (Lee & Spencer, 2005), (Bongaerts, Fourtouni, & Stokes,
2007) of the contacting surfaces in the tribological contact to maintain
low contact pressures and create the conditions for isoviscous-elastohydroynamic
lubrication (I-EHL) to occur. One key advantage of PDMS
which has contributed to its widespread use is its ease of fabrication.
Prior to crosslinking, PDMS can be cast into suitable moulds of almost
any desired shape. Other attractive features of PDMS include its physiological
inertness, availability, low unit cost, as well as its good
thermal and oxidative stability.
PDMS is a transparent silicon-based organic polymer, used to represent
biological materials in numerous tribological studies (e.g.
(Bongaerts et al., 2007) (Dresselhuis et al., 2007), (De Vicente, Spikes,
& Stokes, 2004)). It is highly compliant, with a Young's modulus
E≈0.57–3.7 MPa (depending on degree of crosslinking) (Wang,
Volinsky, & Gallant, 2014), due to its uniquely low glass transition
temperature (Tg≈−125 °C) (Lötters, Olthuis, Veltink, & Bergveld,
1999). The surface of PDMS is hydrophobic, due to its repeating eOeSi
(CH3)2- group (Adams et al., 2007) but can be made hydrophilic by
plasma cleaning. In addition to this, PDMS is being used extensively in
polymeric microfluidics (e.g. (Eddings, Johnson, & Gale, 2008)) research
and findings from this area may be usefully applied in this study.
The tribological properties of PDMS are now fairly well understood.
Vorvolaskos and Chaudhury (Vorvolakos & Chaudhury, 2003) investigated
the effect of molecular weight and test temperature on
friction in a pure sliding contact between a PDMS and metal surface.
Bongaerts et al. (Bongaerts et al., 2007) investigated the effect of surface
roughness of PDMS on the lubricating properties of biopolymers
and aqueous solutions. PDMS, like most elastomeric surfaces, is by
nature hydrophobic but an oxidation treatment can be employed to
create a hydrophilic surface. Hillborg et al. (Hillborg & Gedde, 1998),
(Hillborg, Sandelin, & Gedde, 2001) and Schneemilch et al.
(Schneemilch & Quirke, 2007) investigated the wettability of PDMS
before and after oxidisation by several techniques and studied the effect
of crosslink density on oxidation. de Vicente et al. (de Vicente, Stokes, &
Spikes, 2005) looked at the influence of surface modification of PDMS
on its aqueous lubrication properties. However, there remains some
debate over the suitability of PDMS as a model biosurface and instances
of PDMS being tested under saliva conditions are few in number.
The second soft matrix to be considered here as a potential substrate
to mimic the oral mucosa is agarose. Agarose, the agaropectin deficient
fraction of agar derived from seaweed and consisting of β-1,3 linked α-
galactose and α-1,4 linked 3,6-anhydro-αL-galactose residues
(Normand, Lootens, Amici, Plucknett, & Aymard, 2000), is used to
create a hydrogel-like matrix. The compliance of agarose varies enormously
depending on concentration, with Young's moduli ranging
from ∼1.5 kPa to ∼3 MPa (Benkherourou, Rochas, Tracqui, Tranqui, &
Guméry, 1999), (Normand et al., 2000), (Chen, Suki, & An, 2004). In
addition to this, agarose has the ability to grow cells in suspension and
has therefore been used in tissue culturing systems (Chen et al., 2004).
This combination of properties make agarose an attractive choice in
biomedical research, for example, as a cartilage mimic (Saris et al.,
2000), or as a phantom material for magnetic resonance elastography
(Muthupillai et al., 1995). It is therefore surprising that agarose has
been used in few tribological studies and seems to have been overlooked
completely as an oral mimic. Fernández Farrés studied its frictional
behaviour, but did so under glucose and glycerol lubrication
rather than saliva (Fernández Farrés & Norton, 2015). Shewan et al.
also recently studied the lubrication performance of agarose, but as
particles in suspensions rather than a substrate (Shewan & Stokes,
2015).
It can be concluded that it is important to be able to mimic the oral
mucosa surface and various materials have been studied for this purpose.
However, these have rarely been compared with actual biological
materials (probably because of the difficulty in source, preserving and
securing them) and almost never when lubricated by saliva. To address
this, the current study characterises the friction and film thickness
performance of polydimethyl siloxane (PDMS), agarose and porcine
tongue, with the aim of assessing their suitability as an oral mimic for
tribological testing. Particular attention is paid to the compliance and
protein binding behaviours of these substrates.
2. Test methods
2.1. Specimen preparation
PDMS specimens were moulded using a commercially available
Sylgard 184 kit from Dow-Corning, containing a base and curing agent
to produce a material with a Young's modulus 1.84 MPa at 23 °C.
Agarose gel was produced by dissolving powdered agarose (Sigma-
Aldrich, Poole, UK) into water at 1 or 2% w/v. To aid dissolution the
solution was heated to 90 °C then allowed to cool to a temperature
below the coil-helix transition at around 35 °C. At this point agarose
forms a gel, consisting of an infinite three-dimensional network of fibre
helices (Normand et al., 2000).
Prior to collection the subject refrained from food and drink for 1 h.
Resting whole mouth saliva (WMS) was collected from a single subject
by drooling into a pre-weighed tube, kept on ice. After collection saliva
was briefly centrifuged (3000 g for 3 min) to remove sloughed cells and
other debris.
Porcine tongue was procured and tested on the same day. Its underside
was removed to produce a parallel slab. This specimen was then
bonded onto a flat plate using cyanoacrylate adhesive and mounted in
the friction rig.
G. Carpenter et al. Food Hydrocolloids 92 (2019) 10–18
11
2.2. Indentation and surface roughness measurements
The elastic modulus of each sample material was measured using an
indention test performed on a Mach 1 rig (Biomomentum Inc., Laval,
Canada). This involved indenting the sample at 1 mm/s with a spherical
indenter with radius 3.175 mm, during three repeat tests, while measuring
the normal force and the vertical displacement. The normal force
was measured using 1.5 N single-axis load cell with a resolution of
75 μN and the vertical displacement was measured by the moving stage
of the rig with a resolution of 0.1 μm. A depth of penetration of 0.6mm
was used for agarose 1% w/v and 0.4mm for each of the other samples.
This was done in accordance with Van Dommelen et al.’s (van
Dommelen, van der Sande, Hrapko, & Peters, 2010) suggestion that the
sample thickness does not significantly affect the data if indentation
depths are restricted to less than 10% of the sample thickness. Nevertheless
a formulation that considers the finite thickness of the sample
was used (Hayes, Keer, Herrmann, & Mockros, 1972) to calculate
Young's moduli. Contact mechanics equations were fitted to the data to
give the Young's modulus, specifically,
χ = a
dR
2
(1)
=
− κ P ν
aGd
(1 )
4 (2)
Where d is the displacement of the indenter, R is the radius of the indenter,
a is the radius of the contact region, P the applied load, G the
shear modulus, and ν the Poisson's ratio. A schematic of the test is
provided in Fig. 1.
The reaction force and the indenter displacement are recorded by
the Mach-1 Motion Software and enter the above equations as P and d
respectively. The Poisson's ratio is assumed to be equal to 0.5 (incompressible
materials). The specimens' height h and the indenter radius
R are also known. The values of χ and κ are given in Table 2 in
(Hayes et al., 1972) for different values of a, h and ν. The radius of the
contact region a is estimated during the curve fit with equation (1).
Once the fitting algorithm converges, the Young's Modulus E is computed
from the Shear Modulus G using the equation
E = 2G(1 + ν) (3)
The roughness of each of the specimens was measured three times
(each at a different location) on the surface, using a Veeco optical
profilometer.
2.3. Protein staining measurements
SDS-PAGE (sodium dodecyl sulfate–polyacrylamide gel electrophoresis)
was used to assess the degree of binding of different proteins
to the surface of the oral mimics. This immunoblotting technique targets
proteins in a sample with specific dyes and measures their progression
through a gel, due to an applied electric field. In this way,
different proteins in a sample with different molecular weights are separated.
Staining involved incubating for an hour at room temperature
with whole mouth saliva from a single subject. Coomassie Brilliant Blue
(CBB) was used stain of all proteins. In addition to this, Periodic Acid
Schiff's (PAS) was used to stain for highly glycosylated proteins and
specific antibody with sensitive chemiluminescent detection was used
for the saliva protein muc7. Samples were removed from the surface of
each of the oral mimic surfaces and tested in this way to investigate
which proteins were present.
2.4. Friction measurements
A contact was produced by loading and sliding a 5mm radius silica
hemisphere against the compliant disc specimen, using a UMT2
(Universal Materials Tester), manufactured by CETR, (Campbell, USA).
This equipment was operated in pin-on-disc mode, so that the PDMS
specimen rotated, while the silica hemisphere was held stationary. The
lower specimen was located on a rotating table, capable (with certain
modifications), to run at speeds from 0.01 rpm up to∼4000 rpm.
Friction force (Fx) and normal load (Fz) were measured using strain
gauges, bonded to the housing above the stationary silica hemisphere
specimen. Sensitive, low-load sensors were chosen for this purpose,
with measurement ranges of±0.65 N and±6 N for Fx and Fz respectively.
This experimental setup is shown in Fig. 2 a. Friction data
was recorded over a speed range from 0.002 to 0.35 ms−1 with an
applied load of 0.2 N.
2.5. Laser induced fluorescence measurements
The custom-built Laser Induced Fluorescence (LIF) microscope is
shown by the photograph and schematic in Fig. 2b. It comprises an LED
light source, which produces a beam that is focussed through the
transparent PDMS specimen onto the contact interface. For certain
tests, the proteins in the lubricating saliva were tagged with a dye,
fluorescein isothiocyanate, (FITC) in order for them to fluoresce when
excited by the LED. The emitted light is filtered and collected by a highspeed
EMCCD camera. For film thicknesses greater than 200 nm, the
recorded intensity of the fluorescence light emitted from the contact is
proportional to the thickness of the liquid in the interface. This means
that the images acquired by the camera represent maps showing the
distribution of proteins in the contact. Further details of the fluorescence
technique can be found in (Myant, Reddyhoff, & Spikes, 2010),
(Reddyhoff, Choo, Spikes, & Glovnea, 2010).
3. Results
3.1. Indentation and roughness results
Fig. 3 shows the force displacement curves for the four materials
during the indentation tests using the Biomomentum Mach-1 rig.
Equations (1)–(3) were applied to this data giving the Young's Modulus
values shown in Table 1. As, expected the Young's Modulus of the
porcine tongue at 3.5 kPa is lower than other measurements of biological
tissue found in the literature – e.g. human skin: 25–101 kPa
(Akhtar, Sherratt, Cruickshank, & Derby, 2011), human muscle:∼7 kPa
(McKee et al., 2011). These values were most closely mimicked by the
agarose with a modulus 66 and 174 kPa for the 1 and 2% concentrations.
The modulus of the PDMS was nearly two orders of magnitude
Fig. 1. Schematic diagram of indentation setup. higher than the biological sample.
G. Carpenter et al. Food Hydrocolloids 92 (2019) 10–18
12
Table 2 shows the surface roughness measurements for each of the
specimens, which are separated by approximately an order of magnitude
(PDMS < Agar < Tongue). The effect this variation has on friction,
however, is counteracted by the different stiffness which increases
in the opposite sense (e.g. the asperities on the tongue surface are
readily flattened). The range of values displayed for each measurement
refers to the standard error, which is due to the variation over surface of
the specimens, rather than any error in the measurement.
3.2. Protein staining results
When incubated for an hour at room temperature with whole mouth
saliva from a single subject, neither agarose nor PDMS bound significant
amounts protein as shown by Coomassie Brilliant Blue (CBB)
staining of all proteins as shown in Fig. 4. Small amounts of amylase,
the single most abundant protein in saliva, is the only protein apparent
(identity based on apparent molecular weight). When the same gel was
stained with Periodic Acid Schiff's (PAS), a stain for highly glycosylated
proteins, small amounts of muc5b and muc7 were visible in the agarose
gel but nothing in the sample eluted from PDMS. Immunoblotting for
muc7 using a specific antibody with sensitive chemiluminescent detection
again suggested agarose gel bound some mucins whereas PDMS
did not. Incorporating potentially muco-adhesive agents such as chitosan
and the lectin WGA (AWGL) into the agarose appeared to enhance
protein, and mucin in particular, binding to the agarose.
3.3. Friction results
In this section, Stribeck curves have plotted the speed on the x-axis
rather than the product of speed×viscosity as is customary (de Vicente
et al., 2006). This is because the viscosity of saliva, being highly non-
Newtonian, varies strongly as a function of shear rate (Rantonen &
Meurman, 1998) and is therefore not constant throughout each test.
Another obstacle in assuming a single viscosity is the inhomogeneous
and surface active nature of saliva means that it is not possible to assume
whether it is the high viscosity proteins or just water molecules
are entrained between the surfaces.
Fig. 5 shows the variation in friction with sliding speed for the
agarose-glass contact. Under unlubricated and water lubricated conditions,
this substrate exhibits lower friction, due to the agarose being a
hydrogel which releases water when compressed. When agarose was
submerged in water it exhibits Stribeck curve behaviour with higher
friction at low speeds which decreases rapidly with speed due to the
formation of an elastohydrodynamic film. However, when lubricated
with saliva, the friction behaviour is completely unchanged compared
to pure water.
Fig. 6 shows the variation in friction with sliding speed for the
PDMS-glass contact under different conditions. When the contact is
unlubricated, the coefficient of friction remains between 3 and 4, due to
the strong adhesive interaction between the surfaces. The increase
followed by a decrease in friction with sliding speed may be attributed
to the viscoelastic properties of the elastomer (the friction that arises
Fig. 2. Laser Induced Fluorescence setup, a) Photograph, b) Schematic diagram of indentation setup.
Fig. 3. Force-displacement curves for each material obtained during indentation.
Table 1
Young's modulus results for each test material in kPa.
Porine tongue Agarose (1%) Agarose (2%) PDMS
3.46 66.4 174 2270
Table 2
Surface roughness results for each test material. Examples of the corresponding
surface topographies are shown in the appendix.
Roughness (nm)
Average (Ra) RMS (Rq)
Tongue 5480 ± 667 656 ± 403
PDMS 10.1 ± 0.16 13.1 ± 0.23
Agar 1% 399 ± 91 514 ± 109
Agar 2% 325 ± 14 420 ± 18
G. Carpenter et al. Food Hydrocolloids 92 (2019) 10–18
13
from the deformation of the PDMS varies as a function of speed due to
its viscoelastic response).
At the lowest speed, the dry and water submerged friction values are
similar, showing that no water is present between the surfaces even
when submerged (i.e. no boundary film is formed). This is because the
speed is insufficient to separate the surfaces hydrodynamically and also
water molecules are not attracted to either the PDMS or glass surface. In
contrast, when flooded with whole mouth saliva, very low friction
(more than two orders of magnitude less than the dry case) is observed.
These observations are in agreement with those of Stokes and coworkers
(Bongaerts et al., 2007).
Fig. 7 shows the friction versus speed behaviour for the porcine
tongue sample. When lubricated with pure water, this sample shows
high boundary friction which reduces with speed due to lubricant entrainment.
In addition to this, the low speed boundary friction is significantly
reduced when lubricated with saliva when compared to
water. The shape of the dry, water and saliva lubricated curves are similar
for PDMS and tongue, however there was a significant difference
in terms of the magnitude of the friction.
3.4. Laser induced fluorescence results
An advantage of PDMS over both the tongue and the agarose samples
is that it is transparent, which enables imaging of the contact. To
demonstrate this, the LIF microscopy results in Fig. 8 show the build-up
and flow of FITC-dyed saliva proteins within the contact during sliding.
Images a-d in this figure are intensity maps of the contact showing the
distribution of proteins (these are frames taken from the videos provided
as Supplementary Material). Here, bright colours represent high
concentrations of proteins in the contact and the dark blue circular
region is the pressurised contact area. Proteins agglomerations of
varying morphologies are evident as they are entrained due the sliding
motion from the inlet at the top of the figure to the outlet at the bottom.
The figure also plots the variation in friction over time alongside a
measure of the fluorescence intensity within the contact. The latter was
obtained by counting the number of pixels within the contact with an
intensity greater than the test average (using a Matlab program).
There is a clear correlation between the coefficient of friction and
the presence of proteins within the contact zone. This is highlighted by
Fig. 4. Staining showing binding of proteins to each mimic surface. (note: the whole mouth saliva sample is labelled WMS).
Fig. 5. Friction versus sliding speed for an agarose disc pressed against a stationary silica hemisphere with a force of 0.2 N. a) linear scale, b) log scale.
G. Carpenter et al. Food Hydrocolloids 92 (2019) 10–18
14
the calculated cross correlation coefficient of 0.872 and the visible
occurrence of peaks (shown by ?) in one single coinciding with troughs
(shown by v) in the other signal, and vice versa.
4. Discussion
The stiffness of the tongue sample is far closer to that of the agarose
than the PDMS. This means that, for the agarose contact, the area and
pressure match more closely those found in the mouth. Moreover, if this
is considered in isolation, it suggests the boundary friction and hydrodynamic
film thickness separating the surfaces for the agarose are more
realistic. But it is important also to consider the mucosal pellicle for
lubrication of oral surfaces by saliva and to implement this we added
mucoadhesive components to agarose gels to enhance mucin binding.
In some ways this appeared successful with greater amounts of all
salivary proteins, including the two mucins (muc 5b and muc7),
binding in greater amounts to the chitosan and WGA lectin containing
agarose, shown by protein staining. However, there was little effect on
the tribology when the mucoadhesive agarose was compared to agarose
alone. Indeed, there was almost no difference between agarose lubricated
by water or saliva. This suggests that this substrate is already
being lubricated by the surface itself – probably water being expelled
from the hydrogel under the pressure of the tribo-pairing. Furthermore,
the interchangeability of the curves for water and saliva lubricated
contacts in the full film regime, where friction is dominated by viscous
drag, suggests high viscosity saliva proteins are not even being entrained
into the contact at entrainment high speed.
The behaviour of PDMS showed much stronger protein interactions.
When sliding at low speed (∼0.1 mm/s) in the boundary regime (i.e.
when there is insufficient hydrodynamic entrainment of liquid to separate
the surfaces), the coefficient of friction for PDMS when lubricated
by saliva is two orders of magnitude lower than when lubricated
with pure water (∼0.01 vs ∼2). Since saliva is made up of
99.5% water and<0.5% protein molecules, this shows the proteins are
highly effective surface active lubricating additives, which adhere to
PDMS and oral surfaces to produce a lubricous low shear strength interface.
More specifically, PDMS, like the tongue is hydrophobic
(Dresselhuis et al., 2007) and due to its charged eOeSi(CH3)2- group it
attracts proteins indiscriminately (Phillips & Cheng, 2005) (in fact the
adherence of biological proteins to PDMS is a problematic occurrence in
biological lab-on-chip systems (Phillips & Cheng, 2005)). The viscosity
difference between water and saliva (0.89 cP and ∼5 cP (Rantonen &
Meurman, 1998)) is insufficient to explain this difference.
It could also be hypothesised that the elasticity of the bulk saliva
may be responsible for the differences in the hydrodynamic/rheological
response of the PDMS compared to water. However, at such low speeds
elasticity should not play a role. Furthermore, as shown, the friction is
strongly affected by the chemistry of sample surface, which would not
be the case under full film hydrodynamic lubrication. Finally, as shown
by Davies et al., the elasticity of resting saliva, as tested here, is significantly
lower than that of acid stimulated saliva (Davies, Wantling, &
Stokes, 2009).
The shape of the dry, water and saliva lubricated curves for tongue
are most similar to those of PDMS, which supports the latter's use an
oral mimic. However, there was a significant difference in terms of the
magnitude of the friction. Under dry, unlubricated conditions, the
Fig. 6. Friction versus sliding speed for PDMS disc pressed against a stationary silica hemisphere with a force of 0.2 N. a) linear scale, b) log scale.
Fig. 7. Friction versus sliding speed for porcine tongue pressed against a stationary silica hemisphere with a force of 0.2 N. a) linear scale, b) log scale.
G. Carpenter et al. Food Hydrocolloids 92 (2019) 10–18
15
PDMS shows a friction coefficient of around 3.5 in contrast to 1.5 for
the tongue sample. When water is replaced with saliva, the PDMS
friction reduces to ∼0.02 while the tongue sample only falls to 0.25.
This difference in friction coefficient magnitude between PDMS and
tongue, under low speed conditions, when the surfaces are in contact,
can be analysed as follows. As predicted by Schallamach (Schallamach,
1958) and Roberts (Barquins & Roberts, 2000), using Hertz theory, the
coefficient of friction under dry/boundary lubrication conditions (i.e.
when not liquid is separating the surfaces) is given by:
μ = πS (9R/16E)2/3W−1/3 (4)
where R is the reduced radius, E is the elastic modulus, S is the interfacial
shear stress and W is the load. This shows that higher friction
coefficients arise in contacts between compliant materials, since these
deform and produce a larger contact area to be sheared. Equation (4)
can be used to calculate the shear stress within the contact, S, under
boundary lubrication conditions since all other quantities are known,
which gives values of 0.53 and 3.2 kPa for tongue and PDMS respectively.
This suggests that, when lubricated by saliva, the lower friction
of the PDMS surface arises due to its higher stiffness and smaller contact
area, but per unit area the protein covered tongue is in fact more easily
sheared. Another factor is the difference in roughness between the two
samples. Under dry conditions, the lower roughness of the PDMS increases
the real contact areas and hence adhesion, whereas under
protein lubrication lower roughness aids the formation of a complete
surface film.
The highly lubricious nature of the saliva proteins and their adherence
to the PDMS surface are confirmed by the in-contact LIF results.
In addition to demonstrating the effectiveness of this technique to
study saliva protein entrainment, these results shed light on the details
of this intermittent process. More specifically, the observed highly
transient nature of the protein entrainment is similar to that demonstrated
by Fan et al. (Fan, Myant, Underwood, Cann, & Hart, 2011) who
attributed the build-up and breakdown of proteins within the contact to
the following inlet aggregation mechanism. Due to the contact geometry
and flow path of the lubricant, proteins are transported into the
contact inlet. Some of these proteins attach to the converging surfaces.
Over time additional proteins become entangled with the surface protein
branches, forming a larger protein mass in the inlet zone. A critical
point is then reached where surface friction forces and lubricant hydrodynamic
forces cause this protein mass to breakdown, allowing
large agglomerate of proteins to be dragged into the contact zone. This
can be observed in Fig. 8, highlighted on the plot with a * symbol,
where peak protein presence occurs with minima in friction coefficient.
Fig. 8. Laser Induced Fluorescence results from a sliding test of silica hemisphere loaded against PDSM disc and lubricated with FITC dyed saliva. a) Intensity maps
for unloaded contact, b) to d) Intensity maps during sliding, e) Variation of friction coefficient (blue) and fluorescence signal (orange), obtained by counting number
of pixels with intensity greater than the test average. To highlight the correlation, example peaks are labelled with ˆ and example troughs are labelled with v. The
arrows around 400 s highlight symmetrical trends in the two signals. Note: the step changes in fluorescence observed at 5 and 440 s correspond to increase and
decrease in in-contact proteins during the loading and unloading of the contact. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
G. Carpenter et al. Food Hydrocolloids 92 (2019) 10–18
16
The difference in lubricating properties of saliva compared to water
are assumed to relate to the salivary proteins such as mucins and statherin.
Mucins contribute to the viscosity of saliva which may aid the
hydrodynamic mode of lubrication (Bongaerts et al., 2007) whereas
statherin, a small surface active protein is regarded as a boundary lubricant
(Douglas et al) (Harvey, Carpenter, Proctor, & Klein, 2011),
although it is entirely possible that other proteins also contribute to the
lubricating properties.
5. Conclusions
From a surface chemistry point of view, PDMS is suitable at replicating
the oral mucosa, since, like the tongue, it is hydrophobic
(Dresselhuis, 2008) and its charged groups, which attract proteins
(Phillips & Cheng, 2005). This resulted in PMDS showing similar friction
versus speed trends to the biological sample. Agarose on the other
hand shows only a minor difference in friction when lubricated by
saliva versus water. This is attributed to the hydrated agarose surface
weakly adhering to the saliva proteins. The friction properties of
agarose did not improve even after the agarose was treated with mucoadhesive
components to enhance mucin binding.
Although PDMS rubbers have similar hydrophobic qualities to a
tongue, PDMS has an elastic modulus two orders of magnitude larger.
Furthermore, even if the degree of cross linking is limited the modulus
of PDMS reduces only to around 570 kPa (Wang et al., 2014) versus
3.4 kPa for tongue. This is significant shortcoming, since the stiffness of
the sample affects both the boundary friction (μ α E′−2/3 (Schallamach,
1958)) and the elastohydrodynamic film thickness (h α E′0.66 (de
Vicente et al., 2005)). There is also considerable variation in roughness
between the specimens tested, with agarose matching the tongue most
closely. However, the effect this has on friction is limited due to the incontact
flattening of the rougher materials, which have lower stiffness.
An advantage of PDMS is that being transparent it allows in-contact
imaging of saliva lubrication mechanisms. This was demonstrated using
laser induced fluorescence and the resulting strong correlation (0.87)
between friction and protein intensity signals confirms the lubricous
boundary film forming ability of saliva proteins. Protein aggregation
was shown to be highly transient in nature. The application of this
technique to study the tribological interactions between saliva and
foods and beverages in order to scientifically characterise mouthfeel
attributes is the subject of ongoing research.
Acknowledgements
S.K. Baier and R.V Potineni are employed by PepsiCo, Inc. The views
expressed in this research article are those of the authors and do not
necessarily reflect the position or policy of PepsiCo, Inc. The research
was funded by PepsiCo, Inc (grant number: P55310-1).
Appendix A. Supplementary data
Supplementary data to this article can be found online at 01.049.
Appendix. Surface topography measurements
Fig. A1. Surface topographies of the three materials, measured using a Veeco optical profilometer, a) porcine tongue, b) PDMS, c) agrose.
References
Adams, M. J., Briscoe, B. J., & Johnson, S. a. (2007). Friction and lubrication of human
skin. Tribology Letters, 26(3), 239–253.
Akhtar, R., Sherratt, M. J., Cruickshank, J. K., & Derby, B. (2011). Characterizing the
elastic properties of tissues. Materials Today, 14(3), 96–105.
Barquins, M., & Roberts, A. D. (2000). Rubber friction variation with rate and temperature:
Some new observations. Journal of Physics D Applied Physics, 19(4), 547–563.
Benkherourou, M., Rochas, C., Tracqui, P., Tranqui, L., & Guméry, P. Y. (1999).
Standardization of a method for characterizing low-concentration biogels: Elastic
properties of low-concentration agarose gels. Journal of Biomechanical Engineering,
121(2), 184–187.
Bongaerts, J. H. H., Fourtouni, K., & Stokes, J. R. (2007). Soft-tribology: Lubrication in a
compliant PDMS-PDMS contact. Tribology International, 40(10–12), 1531–1542 SPEC.
ISS.
Chen, J., & Stokes, J. R. (2012). Rheology and tribology: Two distinctive regimes of food
texture sensation. Trends in Food Science & Technology, 25(1), 4–12.
Chen, Q., Suki, B., & An, K.-N. (2004). Dynamic mechanical properties of agarose gels
modeled by a fractional derivative model. Journal of Biomechanical Engineering,
126(5), 666–671.
Corfield, A. P. (2015). Mucins: A biologically relevant glycan barrier in mucosal protection.
Biochimica et Biophysica Acta (BBA) - General Subjects, 1850(1), 236–252.
Cox, M. A. J., Driessen, N. J. B., Boerboom, R. A., Bouten, C. V. C., & Baaijens, F. P. T.
(2008). Mechanical characterization of anisotropic planar biological soft tissues using
finite indentation: Experimental feasibility. Journal of Biomechanics, 41(2), 422–429.
Davies, G. A., Wantling, E., & Stokes, J. R. (2009). The influence of beverages on the
stimulation and viscoelasticity of saliva: Relationship to mouthfeel? Food
Hydrocolloids, 23(8), 2261–2269.
De Vicente, J., Spikes, H. A., & Stokes, J. R. (2004). Complex fluids in thin lubricating films
between soft surfaces. 1–4.
van Dommelen, J. A. W., van der Sande, T. P. J., Hrapko, M., & Peters, G. W. M. (2010).
Mechanical properties of brain tissue by indentation: Interregional variation. Journal
of the Mechanical Behavior of Biomedical Materials, 3(2), 158–166.
W. H. Douglas, E. S. Reeh, N. Ramasubbu, P. A. Raj, K. K. Bhandary, and M. J. Levine,
"Statherin: A major boundary lubricant of human saliva," Biochemical and
Biophysical Research Communications, vol. 180, no. pp. 91-97.
Dresselhuis, D. M. (2008). The fate of fat: Tribology, adhesion and fat perception of food
emulsions. Wageningen Universiteit.
Dresselhuis, D. M., Klok, H. J., Stuart, M. A. C., De Vries, R. J., Van Aken, G. A., & De
Hoog, E. H. A. (2007). Tribology of o/w emulsions under mouth-like conditions:
Determinants of friction. Food Biophysics, 2(4), 158–171.
Drewnowski, A. (1997). Why do we like fat? Journal of the American Dietetic Association,
97(7), S58–S62.
Eddings, M. A., Johnson, M. A., & Gale, B. K. (2008). “Determining the optimal
PDMS–PDMS bonding technique for microfluidic devices. Journal of Micromechanics
and Microengineering, 18(6), 067001.
Fan, J., Myant, C. W., Underwood, R., Cann, P. M., & Hart, A. (2011). Inlet protein aggregation:
A new mechanism for lubricating film formation with model synovial
fluids. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of
G. Carpenter et al. Food Hydrocolloids 92 (2019) 10–18
17
Engineering in Medicine, 225(7), 696–709.
Fernández Farrés, I., & Norton, I. T. (2015). The influence of co-solutes on tribology of
agar fluid gels. Food Hydrocolloids, 45, 186–195.
Gibbins, H. L., Proctor, G. B., Yakubov, G. E., Wilson, S., & Carpenter, G. H. (2014).
Concentration of salivary protective proteins within the bound oral mucosal pellicle.
Oral Diseases, 20(7), 707–713.
Harvey, N. M., Carpenter, G. H., Proctor, G. B., & Klein, J. (2011). Normal and frictional
interactions of purified human statherin adsorbed on molecularly-smooth solid substrata.
Biofouling, 27(8), 823–835.
Hayes, W. C., Keer, L. M., Herrmann, G., & Mockros, L. F. (1972). A mathematical analysis
for indentation tests of articular cartilage. Journal of Biomechanics, 5(5), 541–551.
Hillborg, H., & Gedde, U. W. (1998). Hydrophobicity recovery of polydimethylsiloxane
after exposure to corona discharges. Polymer, 39(10), 1991–1998.
Hillborg, H., Sandelin, M., & Gedde, U. W. (2001). Hydrophobic recovery of polydimethylsiloxane
after exposure to partial discharges as a function of crosslink density.
Polymer, 42(17), 7349–7362.
Khanafer, K., Duprey, A., Schlicht, M., & Berguer, R. (2009). “Effects of strain rate, mixing
ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane
(PDMS) material as related to its biological applications. Biomed.
Microdevices, 11(2), 503–508.
Lee, S., & Spencer, N. D. (2005). Aqueous lubrication of polymers: Influence of surface
modification. Tribology International, 38(11–12), 922–930 SPEC. ISS.
Lötters, J. C., Olthuis, W., Veltink, P. H., & Bergveld, P. (1999). The mechanical properties
of the rubber elastic polymer polydimethylsiloxane for sensor applications. Journal of
Micromechanics and Microengineering, 7(3), 145–147.
Malone, M. E., Appelqvist, I. A. M., & Norton, I. T. (2003). Oral behaviour of food hydrocolloids
and emulsions. Part 1. Lubrication and deposition considerations. Food
Hydrocolloids, 17(6), 763–773.
McKee, C. T., Last, J. A., Ph, D., Russell, P., Ph, D., Murphy, C. J., et al. (2011).
“Indentation versus tensile measurements of Young's modulus for soft biological
tissues. Tissue Engineering Part B Reviews, 17(3), 155–164.
Muthupillai, R., Lomas, D., Rossman, P., Greenleaf, J., Manduca, A., & Ehman, R. (1995).
Magnetic resonance elastography by direct visualization of propagating acoustic
strain waves. Science (80), 269(5232), 1854–1857.
Myant, C., Reddyhoff, T., & Spikes, H. A. (2010). Laser-induced fluorescence for film
thickness mapping in pure sliding lubricated, compliant, contacts. Tribology
International, 43(11), 1960–1969.
Normand, V., Lootens, D. L., Amici, E., Plucknett, K. P., & Aymard, P. (2000). New insight
into agarose gel mechanical properties. Biomacromolecules, 1, 730–738.
Phillips, K. S., & Cheng, Q. (2005). Microfluidic immunoassay for bacterial toxins with
supported phospholipid bilayer membranes on poly(dimethylsiloxane). Analytical
Chemistry, 77(1), 327–334.
Prinz, J. F., de Wijk, R. A., & Huntjens, L. (2007). Load dependency of the coefficient of
friction of oral mucosa. Food Hydrocolloids, 21(3), 402–408.
Rantonen, P. J. F., & Meurman, J. H. (1998). Viscosity of whole saliva. Acta Odontologica
Scandinavica, 56(4), 210–214.
Reddyhoff, T., Choo, J. H., Spikes, H. A., & Glovnea, R. P. (2010). Lubricant flow in an
elastohydrodynamic contact using fluorescence. Tribology Letters, 38(3), 207–215.
Saris, D. B., Mukherjee, N., Berglund, L. J., Schultz, F. M., An, K. N., & O'Driscoll, S. W.
(2000). Dynamic pressure transmission through agarose gels. Tissue Engineering, 6(5),
531–537.
Schallamach, A. (1958). Friction and abrasion of rubber. Wear, 1(5), 384–417.
Schneemilch, M., & Quirke, N. (2007). Effect of oxidation on the wettability of poly(dimethylsiloxane)
surfaces. The Journal of Chemical Physics, 127(11).
Shewan, H. M., & Stokes, J. R. (2015). Viscosity of soft spherical micro-hydrogel suspensions.
Journal of Colloid and Interface Science, 442, 75–81.
Stokes, J. R., Boehm, M. W., & Baier, S. K. (2013). Oral processing, texture and mouthfeel:
From rheology to tribology and beyond. Current Opinion in Colloid & Interface Science,
18(4), 349–359.
Stokes, J. R., Bongaerts, J. H. H., & Rossetti, D. (2007). The lubricating properties of
human whole saliva. Tribology Letters, 277–287.
Tang, W., & Bhushan, B. (2010). Adhesion, friction and wear characterization of skin and
skin cream using atomic force microscope. Colloids and Surfaces B: Biointerfaces,
76(1), 1–15.
Tang, W., Bhushan, B., & Ge, S. (2010). Friction, adhesion and durability and influence of
humidity on adhesion and surface charging of skin and various skin creams using
atomic force microscopy. Journal of Microscopy, 239(2), 99–116.
de Vicente, J., Stokes, J. R., & a Spikes, H. (2006). Rolling and sliding friction in compliant,
lubricated contact. Proceedings - Institution of Mechanical Engineers Part J J. Eng.
Tribol. 220(2), 55–63.
de Vicente, J., Stokes, J. R., & Spikes, H. A. (2005). Lubrication properties of non-adsorbing
polymer solutions in soft elastohydrodynamic (EHD) contacts. Tribology
International, 38(5), 515–526.
Vijay, A., Inui, T., Dodds, M., Proctor, G., & Carpenter, G. (2015). Factors that influence
the extensional rheological property of saliva. PLoS One, 10(8), 1–11.
Vorvolakos, K., & Chaudhury, M. K. (2003). The effects of molecular weight and temperature
on the kinetic friction of silicone rubbers. Langmuir, 19(17), 6778–6787.
Wang, Z., Volinsky, A. A., & Gallant, N. D. (2014). Crosslinking effect on polydimethylsiloxane
elastic modulus measured by custom-built compression instrument.
Journal of Applied Polymer Science, 131(22), 1–4.
順應性口腔模擬唾液潤滑的研究
由于倫理問題和獲取生物組織的困難,尋找可作為研究用替代試驗介質的合成彈性體非常重要。這方面的一個重要例子是摩擦測試,以了解在食用過程中(如糖漿、身體和清潔劑)口感屬性背后的機制,這需要一個口頭模擬。為了評估可能的材料對模擬口腔表面的適用性,通過將半球形硅膠針加載并滑動到聚二甲基硅氧烷(PDMS)、瓊脂糖或豬舌樣品上,產生滑動接觸。測量摩擦,并根據試樣的彈性模量計算彈流動力膜厚度,該彈性模量采用壓痕法測量。以唾液和純水為潤滑液進行試驗,并將結果與未潤滑條件進行比較。PDMS在蛋白質粘附方面很好地模擬了舌頭,當用唾液和水潤滑時,兩種樣品的摩擦力都顯著降低,而瓊脂糖在唾液和水潤滑條件下沒有差異。這歸因于PDMS的eOeSi(CH3)2-基團,與水合瓊脂糖表面相比,它為唾液蛋白分子提供了良好的粘附性。然而,PDMS(2.2mpa)的測量模量明顯大于舌(3.5kpa)和瓊脂糖(66-174kpa)。這會影響低速滑動時的表面(邊界)摩擦力,以及高速滑動時的夾帶彈流膜厚度。利用透明的PDMS樣品,我們還使用熒光顯微鏡來監測滑動過程中接觸到的染色標記唾液蛋白的積累和流動。結果表明,唾液中蛋白質的摩擦強度信號與平均蛋白質強度信號之間存在很強的相關性(互相關系數=0.87),從而證實了唾液蛋白質的潤滑邊界膜形成性質。這是研究口感機制的有力方法。一。由于倫理問題和獲取生物組織的困難,有必要尋找可作為研究用替代試驗介質的合成彈性體。這方面的一個關鍵例子是摩擦測試,以了解在食用過程中(如糖漿、身體和清潔劑)口感屬性背后的機制,這需要口頭模擬。這一點很重要,因為食品和飲料的可接受性在很大程度上取決于其口感,而口感是摩擦學和流變學過程的結果(Stokes、Boehm和Baier,2013)。此外,對這些過程的不了解目前限制了健康配方的開發,這些配方可以復制食品,同時減少脂肪等成分(Dresselhuis,2008),(Drewnowski,1997)。在模擬口腔粘膜進行食品和飲料的體外摩擦學研究時,必須考慮粘膜膜。與牙齒上獲得的琺瑯質膜一樣,這是唾液蛋白的一個子集,專門與口腔上皮細胞結合(Gibbins、Proctor、Yakubov、Wilson和Carpenter,2014)。與獲得性釉質膜不同,粘膜膜主要由黏蛋白和分泌性IgA組成。這一層是由唾液粘蛋白(muc5b和muc7)與口腔上皮細胞表達的膜結合粘蛋白(muc1)相互作用驅動的(Vijay,Inui,Dodds,Proctor和Carpenter,2015)。粘蛋白是一種大的高度糖基化的蛋白質,在初分泌時能保留相當數量的水(Corfield,2015)。因此,除了唾液潤滑表面外,在表面附近還有一個水凝膠狀層。然而,唾液在體外試驗中經常被忽略,因為它被認為不方便收集足夠數量的唾液,或者被認為太復雜而無法給出一致的結果。以前,口腔粘膜是用玻璃或其他硬基質模擬的(Chen&Stokes,2012)。近年來,隨著赫茲力學的引入,彈性基底被廣泛應用于軟摩擦學領域。在Dresselhuis等人的一項重要調查中。(Dresselhuis等人,2007),豬舌的表面特征與PDMS進行了比較。他們的研究結論是,由于口腔粘膜和PDMS橡膠,即使表面結構能夠再現生物場景,在摩擦學實驗中也不能互換,PDMS在表面特征上與舌表面的表現不同。然而,這篇被廣泛引用的論文有一個嚴重的缺點,那就是它只使用乳狀液作為潤滑劑,而忽略了唾液的相互作用。在生物表面進行的其他工作,但是沒有唾液的存在包括亞當斯等人的研究。(Adams、Briscoe和Johnson,2007)和Tang等人。(Tang&Bhushan,2010),(Tang,Bhushan,&Ge,2010)人類皮膚潤滑特性研究。亞當斯等人。使用光滑的玻璃或聚丙烯,球形探針頂著人類前臂滑動,而Tang等人。用剃過的豬皮。結果報告了一系列潤滑條件,但重復性的測試難以實現。Prinz等人。(Prinz,de Wijk和Huntjens,2007)研究了用人類唾液潤滑的兩個豬粘膜表面之間的摩擦特性。然而,缺乏數據,沒有對不同的組分材料進行比較。在大多數研究中,選擇交聯聚二甲基硅氧烷(PDMS)是因為其彈性特性、易于處理和相對較低的硬度,可與軟生物組織相比(Cox、Driessen、Boerboom、Bouten和Baaijens,2008;Khanafer、Duprey、Schlicht和Berguer,2009)。PDMS被用作一個(de Vicente,Stokes,&a Spikes,2006),(Malone,Appelqvist,&Norton,2003),(Tang&Bhushan,2010),(Tang et al.,2010)或兩者(Stokes,Bongaerts,&Rossetti,2007),(Lee&Spencer,2005),(Bongaerts,Fourtouni,&Stokes,在摩擦學接觸中保持低接觸壓力并為等粘彈性流體動力潤滑(I-EHL)創造條件。PDMS的一個關鍵優點是易于制造,這也促進了PDMS的廣泛應用。在交聯之前,PDMS可以澆鑄成幾乎任何所需形狀的合適模具。PDMS的其他優點包括其生理惰性、可用性、單位成本低以及良好的熱穩定性和氧化穩定性。PDMS是一種透明的硅基有機聚合物,用于在許多摩擦學研究中代表生物材料(例如(Bongaerts等人,2007年)(Dresselhuis等人,2007年),(De Vicente,Spikes和Stokes,2004年)。由于其*的低玻璃化轉變溫度(Tg≈125°C),其彈性模量E≈0.57–3.7兆帕(取決于交聯程度)(Wang、Volinsky和Gallant,2014)(Lótters、Olthuis、Veltink和Bergveld,1999)。PDMS的表面是疏水的,因為其重復的eOeSi(CH3)2-基團(Adams等人,2007),但可以通過等離子體清洗使其親水。除此之外,PDMS在聚合物微流控領域(如Eddings,Johnson,&Gale,2008)得到了廣泛的應用,該領域的研究成果可以在本研究中得到有益的應用。PDMS的摩擦學特性現在已經相當清楚了。Vorvolakos和Chaudhury(Vorvolakos和Chaudhury,2003)研究了分子量和試驗溫度對PDMS與金屬表面純滑動接觸摩擦的影響。Bongaerts等人。(Bongaerts等人,2007)研究了PDMS表面粗糙度對生物聚合物和水溶液潤滑性能的影響。PDMS,像大多數彈性體表面,本質上是疏水的,但是可以采用氧化處理來產生親水表面。希爾堡等人。(Hillborg和Gedde,1998),(Hillborg、Sandelin和Gedde,2001)和Schneemilch等人。(SnEnMeLCH和奎克,2007)通過幾種技術研究了PDMS在氧化前后的潤濕性,研究了交聯密度對氧化的影響。de Vicente等人。(de Vicente,斯托克斯,&Spikes,2005)研究了PDMS表面改性對其水潤滑性能的影響。然而,對于PDMS作為生物表面模型的適用性仍存在一些爭論,并且PDMS在唾液條件下被檢測的例子很少。第二種軟基質被認為是模擬口腔粘膜的潛在基質是瓊脂糖。瓊脂糖是從海藻中提取的瓊脂中缺少瓊脂蛋白的部分,由β-1,3-連接的α-半乳糖和α-1,4-連接的3,6-脫水-αL-半乳糖殘基(Normand,Lootens,Amici,puckennet,&Aymard,2000)組成,用于制造水凝膠樣基質。瓊脂糖的順應性隨濃度變化很大,楊氏模量從1.5千帕到3千帕不等(Benkherourou、Rochas、Tracqui、Tranqui和Guméry,1999年),(Normand等人,2000年),(Chen、Suki和An,2004年)。此外,瓊脂糖還具有懸浮培養細胞的能力,因此被用于組織培養系統(Chen等人,2004)。這種特性的結合使得瓊脂糖在生物醫學研究中成為一種有吸引力的選擇,例如,作為軟骨模擬物(Saris等人,2000),或作為磁共振彈性成像的模型材料(Muthupillai等人,1995)。因此,令人驚訝的是,瓊脂糖在摩擦學研究中的應用很少,而且似乎*被忽略作為一種口服模擬物。費爾南德斯·法雷斯研究了其摩擦行為,但在葡萄糖和甘油潤滑而非唾液潤滑下進行了研究(費爾南德斯·法雷斯和諾頓,2015)。Shewan等人。近還研究了瓊脂糖的潤滑性能,但它是懸浮液中的顆粒,而不是基質(Shewan&Stokes,2015)。因此,能夠模擬口腔粘膜表面是非常重要的,為此,人們對各種材料進行了研究。然而,它們很少與實際的生物材料進行比較(可能是因為它們在來源、保存和固定方面的困難),而且幾乎從來沒有被唾液潤滑過。為了解決這一問題,本研究對聚二甲基硅氧烷(PDMS)、瓊脂糖和豬舌的摩擦和膜厚性能進行了表征,目的是評估它們作為摩擦學試驗的口腔模擬物的適用性。特別注意這些底物的順應性和蛋白質結合行為。2。試驗方法2.1。樣品制備PDMS樣品使用道康寧市市面上可買到的Sylgard 184試劑盒進行模壓,該試劑盒含有一種堿和固化劑,以在23°C下產生楊氏模量為1.84兆帕的材料。瓊脂糖凝膠是通過溶解粉狀瓊脂糖(Sigma-Aldrich,Poole,(UK)在1%或2%w/v的水中。為了幫助溶解,將溶液加熱至90°C,然后在35°C左右冷卻至低于螺旋轉變的溫度。此時,瓊脂糖形成凝膠,由無限的三維纖維螺旋網絡組成(諾曼德等人,2000)。在收集之前,受試者1小時內不進食和飲水。從單個受試者中收集靜止的全口唾液(WMS),方法是將其流涎到預先稱重的試管中,保存在冰上。收集后,對唾液進行短暫離心(3000 g,持續3分鐘)以去除脫落的細胞和其他碎片。當天采集豬舌并進行檢測。它的下側被移除,形成一個平行的板。然后,使用氰基丙烯酸酯粘合劑將該試樣粘合到平板上,并安裝在摩擦裝置中。G、 Carpenter等人。食品水膠體92(2019)10–18 11 2.2。壓痕和表面粗糙度測量在Mach 1試驗臺(加拿大拉瓦爾市Biomomentum公司)上進行壓痕試驗,測量每個樣品材料的彈性模量。這包括在三次重復試驗期間,用半徑為3.175 mm的球形壓頭以1 mm/s的速度壓入樣品,同時測量法向力和垂直位移。采用1.5 N單軸測壓單元測量75μm的法向力,用0.1μm分辨率的鉆臺移動臺測量垂直位移,每個樣品的穿透深度為0.6mm,瓊脂糖為1% W/V,0.4mm為0.4mm。這是根據Van Dommelen等人(Van Dommelen、Van der Sande、Hrapko和Peters,2010)的建議完成的,即如果壓痕深度限制在樣品厚度的10%以下,樣品厚度不會對數據產生顯著影響。然而,考慮到樣本有限厚度的公式(Hayes、Keer、Herrmann和Mockros,1972)被用于計算楊氏模量。將接觸力學方程擬合到數據中,得到楊氏模量,具體地說,χ=a d R 2(1)=−k P v a G d(1)4(2),其中d是壓頭的位移,R是壓頭的半徑,a是接觸區域的半徑,P是施加的載荷,G是剪切模量,v是泊松比。試驗示意圖見圖1。用Mach-1運動軟件記錄反作用力和壓頭位移,分別以P和d形式輸入上述方程。假設泊松比等于0.5(不可壓縮材料)。試樣的高度h和壓頭半徑R也已知。表2(Hayes et al.,1972)中給出了a、h和ν不同值的x和k值。在用方程(1)進行曲線擬合期間,估計接觸區域a的半徑。一旦擬合算法收斂,根據剪切模量G計算楊氏模量E,使用方程E=2G(1+v)(3)使用Veeco光學輪廓儀在表面上測量每個試樣的粗糙度三次(每個試樣在不同位置)。2.3條。蛋白質染色測量SDS-PAGE(十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳)用于評估不同蛋白質與口腔模擬物表面的結合程度。這種免疫印跡技術以帶有特定染料的樣品中的蛋白質為靶點,并通過凝膠測量它們在外加電場作用下的進展。就這樣,在不同分子量的樣品中分離出不同的蛋白質。染色包括在室溫下用一名受試者的全口唾液孵育一小時。考馬斯亮藍(CBB)染色所有蛋白。此外,采用周期性酸Schiff's(PAS)對高糖基化蛋白進行染色,并用特異性抗體對唾液蛋白muc7進行敏感的化學發光檢測。從每個口腔模擬表面的表面取下樣本,并以這種方式測試哪些蛋白質存在。2.4條。摩擦測量使用CETR(美國坎貝爾)制造的UMT2(通用材料測試儀)將直徑為5mm的二氧化硅半球加載并滑動到柔順圓盤試樣上,產生接觸。該設備在銷-盤模式下運行,使PDMS試樣旋轉,而二氧化硅半球保持靜止。下試樣位于旋轉臺上,能夠(經過某些修改)以0.01轉/分到4000轉/分的速度運行。摩擦力(Fx)和法向載荷(Fz)是用應變計測量的,該應變計與固定硅半球試件上方的殼體連接。為此,選擇了靈敏的低負載傳感器,Fx和Fz的測量范圍分別為±0.65n和±6n。該實驗裝置如圖2a所示。在0.002至0.35 ms-1的速度范圍內,在0.2 N.2.5的負載下記錄摩擦數據。激光誘導熒光測量定制的激光誘導熒光(LIF)顯微鏡如圖2b中的照片和示意圖所示。它包括一個LED光源,該光源產生的光束通過透明PDMS樣品聚焦到接觸界面上。在某些測試中,潤滑唾液中的蛋白質用染料異硫氰酸熒光素(FITC)標記,以便它們在被LED激發時發出熒光。發射的光被高速EMCCD攝像機過濾和收集。當薄膜厚度大于200nm時,從接觸點發射的熒光光的記錄強度與界面中液體的厚度成正比。這意味著攝像機采集的圖像代表了顯示接觸中蛋白質分布的地圖。熒光技術的更多細節可以在(Myant,Reddyhoff,&Spikes,2010),(Reddyhoff,Choo,Spikes,&Glovnea,2010)中找到。三。結果3.1。壓痕和粗糙度結果圖3顯示了使用Biomomentum Mach-1試驗機進行壓痕試驗期間四種材料的力-位移曲線。方程(1)–(3)應用于該數據,給出了表1所示的楊氏模量值。正如預期的那樣,3.5千帕下豬舌的楊氏模量低于文獻中發現的其他生物組織測量值,例如人類皮膚:25-101千帕(Akhtar、Sherratt、Cruickshank和Derby,2011年),人類肌肉:7千帕(McKee等人,2011年)。在1%和2%濃度下,這些數值 于模數為66和174kpa的瓊脂糖。PDMS的模量幾乎是圖1的兩個數量級。縮進設置示意圖。高于生物樣本。G、 Carpenter等人。食品水膠體92(2019)10 - 18 12表2示出了每一個樣品的表面粗糙度測量,它們被分離大約一個數量級(PDMS<瓊脂<舌)。然而,這種變化對摩擦力的影響被相反意義上增加的不同剛度抵消(例如,舌面上的小突起容易變平)。每次測量顯示的數值范圍是指標準誤差,這是由于試樣表面的變化而不是測量中的任何誤差引起的。3.2條。蛋白質染色結果:當在室溫下與來自單個受試者的全口唾液孵育1小時時,所有蛋白質的考馬斯亮藍(CBB)染色顯示,瓊脂糖和PDMS均未結合大量蛋白質,如圖4所示。少量的淀粉酶是唾液中 的單一蛋白質,是 明顯的蛋白質(根據表觀分子量確定)。當用高糖基化蛋白的周期性酸Schiff's(PAS)染色同一凝膠時,瓊脂糖凝膠中可見少量muc5b和muc7,但PDMS洗脫的樣品中沒有。用特異性抗體和敏感的化學發光檢測對muc7進行免疫印跡,再次表明瓊脂糖凝膠結合了一些粘蛋白,而PDMS沒有。在瓊脂糖中加入潛在的粘液粘合劑,如殼聚糖和凝集素WGA(AWGL),似乎可以增強蛋白質,特別是粘蛋白與瓊脂糖的結合。3.3條。摩擦結果在這一段中,StbBek曲線繪制了X軸上的速度,而不是慣用的速度×粘度的乘積(de Vicente等人,2006)。這是因為唾液的粘度是高度非牛頓的,隨著剪切速率的變化而變化很大(Rantonen&Meurman,1998),因此在每次測試中都不是恒定的。假設單一粘度的另一個障礙是唾液的非均質性和表面活性,這意味著無法假設唾液表面夾帶的是高粘度蛋白質還是水分子。圖5顯示了瓊脂糖玻璃接觸的摩擦隨滑動速度的變化。在無潤滑和水潤滑條件下,由于瓊脂糖是一種水凝膠,壓縮時會釋放水分,因此這種基質表現出較低的摩擦力。當瓊脂糖浸沒在水中時,它表現出Stribeck曲線行為,低速時摩擦更大,由于形成彈性流體動力膜,摩擦隨速度迅速減小。然而,當用唾液潤滑時,與純水相比,摩擦行為*沒有變化。圖6示出在不同條件下PDMS玻璃接觸的摩擦隨滑動速度的變化。當接觸是無潤滑的,摩擦系數保持在3和4之間,由于表面之間的強粘著相互作用。隨著滑動速度的增加,摩擦隨之減少,這可歸因于彈性體的粘彈性特性(圖2所示的摩擦)。激光誘導熒光裝置,a)照片,b)壓痕裝置示意圖。圖3。壓痕過程中獲得的每種材料的力-位移曲線。表1各試驗材料的楊氏模量結果(單位:kPa)。多孔舌瓊脂糖(1%)瓊脂糖(2%)PDMS 3.46 66.4 174 2270表2每種試驗材料的表面粗糙度結果。附錄中給出了相應的地表地形圖示例。粗糙度(nm)平均值(Ra)RMS(Rq)舌片5480±667 656±403 PDMS 10.1±0.16 13.1±0.23瓊脂1%399±91 514±109瓊脂2%325±14 420±18 G。Carpenter等人。食品水膠體92(2019)10–18 13由于其粘彈性響應,PDMS的變形隨速度的變化而變化)。在低速度下,干摩擦值和水下摩擦值相似,表明即使在水下,表面之間也不存在水(即沒有形成邊界膜)。這是因為速度不足以以流體動力學的方式分離表面,而且水分子不被PDMS或玻璃表面所吸引。相反,當全口唾液充滿時,可以觀察到非常低的摩擦力(比干燥情況下小兩個數量級以上)。這些觀察結果與斯托克斯和同事的觀察結果一致(Bongaerts等人,2007)。圖7顯示了豬舌樣品的摩擦與速度特性。當用純水潤滑時,該樣品顯示出高的邊界摩擦,由于潤滑劑夾帶而隨著速度降低。此外,與水相比,用唾液潤滑時,低速邊界摩擦顯著減少。PDMS和舌頭的干、水和唾液潤滑曲線形狀相似,但摩擦大小有顯著差異。3.4條。激光誘導熒光結果PDMS比舌和瓊脂糖樣品的優點是它是透明的,這使得接觸成像成為可能。為了證明這一點,圖8中的LIF顯微鏡結果顯示了FITC染色唾液蛋白在滑動過程中在接觸面內的積聚和流動。圖中a-d是顯示蛋白質分布的接觸強度圖(這些是從作為補充材料提供的視頻中獲取的幀)。在這里,明亮的顏色代表了接觸中高濃度的蛋白質,深藍色的圓形區域是加壓接觸區域。由于從圖形頂部的入口到底部的出口的滑動運動,不同形態的蛋白質聚集明顯。該圖還繪制了摩擦隨時間的變化以及接觸內熒光強度的測量值。后者是通過計算接觸點內的像素數,其強度大于測試平均值(使用Matlab程序)。摩擦系數與接觸區內蛋白質的存在有明顯的相關性。圖4突出顯示了這一點。染色顯示蛋白質與每個模擬表面結合。(注:全口唾液樣本標記為WMS)。圖5。瓊脂糖圓盤在0.2N力作用下對固定二氧化硅半球的摩擦力與滑動速度a)線性標度,b)對數標度。G、 Carpenter等人。食品水膠體92(2019)10–18 14計算出的互相關系數為0.872,在一個信號中與另一個信號中的波谷(v)重合的可見波峰(以?表示)出現,反之亦然。四。舌苔的硬度與瓊脂糖的硬度比PDMS更接近。這意味著,對于瓊脂糖接觸,面積和壓力與口腔中發現的更接近。此外,如果將其單獨考慮,則表明分離瓊脂糖表面的邊界摩擦和流體動力膜厚度更為真實。但是,考慮唾液對口腔表面的潤滑作用的粘膜膜也是很重要的,為了實現這一點,我們在瓊脂糖凝膠中添加了粘著成分,以增強粘蛋白結合。在某些方面,這似乎是成功的與更多的所有唾液蛋白質,包括兩個粘蛋白(muc 5b和muc7),結合在殼聚糖和WGA凝集素含有瓊脂糖,顯示出蛋白質染色。但粘著瓊脂糖與單獨瓊脂糖相比,對摩擦學性能影響不大。事實上,水或唾液潤滑的瓊脂糖幾乎沒有區別。這表明,這種基底已經被表面本身潤滑了——可能是在摩擦學配對的壓力下,水從水凝膠中排出。此外,在摩擦主要由粘性阻力控制的全膜狀態下,水和唾液潤滑接觸曲線的互換性表明,高粘度唾液蛋白甚至沒有以高速夾帶進入接觸。PDMS的行為表現出更強的蛋白質相互作用。當在邊界區域(即當液體的流體動力夾帶不足以分離表面)以低速(∼0.1 mm/s)滑動時,唾液潤滑時的摩擦系數比純水潤滑時的摩擦系數低兩個數量級(∼0.01 vs∼2)。由于唾液是由99.5%的水和<0.5%的蛋白質分子組成的,這表明這些蛋白質是高效的表面活性潤滑添加劑,它們粘附在PDMS和口腔表面上,形成lubricous低剪切強度界面。更具體地說,PDMS就像舌頭是疏水的一樣(Dresselhuis等人,2007),由于其帶電的eOeSi(CH3)2-基團,它不分青紅皂白地吸引蛋白質(Phillips&Cheng,2005)(事實上,生物蛋白質粘附到PDMS是生物實驗室芯片系統中的一個問題(Phillips&Cheng,2005))。水和唾液之間的粘度差異(0.89 cP和∼5 cP(Rantonen和Meurman,1998))不足以解釋這種差異。也可以假設,與水相比,PDMS的流體動力學/流變學響應的差異可能是由唾液的彈性引起的。然而,在如此低的速度下,彈性不應發揮作用。此外,如圖所示,摩擦受到樣品表面化學性質的強烈影響,而在全膜流體動力潤滑條件下則不是這樣。后,如Davies等人所示,此處測試的靜止唾液的彈性明顯低于酸刺激唾液的彈性(Davies,Wangling,&Stokes,2009)。舌頭的干燥、水和唾液潤滑曲線的形狀與PDMS 相似,這支持后者使用口腔模擬。然而,在摩擦力的大小方面存在顯著差異。在干燥、無潤滑的條件下,如圖6所示。在0.2N的力作用下,PDMS圓盤對固定二氧化硅半球的摩擦與滑動速度a)線性標度,b)對數標度。圖7。豬舌在0.2n.a)線性標度,b)對數標度力作用下對靜止二氧化硅半球的摩擦力與滑動速度的關系。G、 Carpenter等人。食品水膠體92(2019)10–18 15 PDMS顯示摩擦系數約為3.5,而舌樣為1.5。當用唾液代替水時,PDMS的摩擦力減小到0.02,而舌苔的摩擦力只有0.25。在低速條件下,當表面接觸時,PDMS和舌片之間的摩擦系數大小差異可以分析如下。根據Schallamach(Schallamach,1958)和Roberts(Barquins&Roberts,2000)的預測,使用赫茲理論,干/邊界潤滑條件下的摩擦系數(即,當非液體分離表面時)由以下公式給出:μ=πS(9R/16E)2/3W−1/3(4),其中R是減小半徑,e是彈性模量,S為界面剪應力,W為荷載。這表明,柔性材料之間的接觸會產生更高的摩擦系數,因為這些材料會變形并產生更大的接觸面積以進行剪切。方程(4)可用于計算邊界潤滑條件下接觸點S內的剪應力,因為所有其他量都已知,其中舌和PDMS的值分別為0.53和3.2kpa。這表明,當唾液潤滑時,PDMS表面的摩擦力較低,這是因為它的硬度較高,接觸面積較小,但每單位面積的蛋白質覆蓋舌頭實際上更容易剪切。另一個因素是兩個樣品之間粗糙度的差異。在干燥條件下,較低粗糙度的PDMS增加了實際接觸面積,從而增加了粘附力,而在蛋白質潤滑下,較低粗糙度有助于形成完整的表面膜。唾液蛋白的高潤滑性及其與PDMS表面的粘附性已被接觸LIF結果證實。除了證明這項技術對研究唾液蛋白夾帶的有效性外,這些結果還揭示了這一間歇過程的細節。更具體地說,觀察到的蛋白質夾帶的高度瞬態性質與Fan等人所證明的類似。(Fan,Myant,Underwood,Cann,&Hart,2011)他將接觸中蛋白質的積累和分解歸因于以下的入口聚集機制。由于潤滑劑的接觸幾何形狀和流動路徑,蛋白質被輸送到接觸入口。其中一些蛋白質附著在會聚表面上。隨著時間的推移,更多的蛋白質與表面的蛋白質分支糾纏在一起,在入口區形成一個更大的蛋白質團。然后到達一個臨界點,在這個臨界點上,表面摩擦力和潤滑劑流體動力會導致蛋白質團分解,從而使蛋白質的大團塊被拖進接觸區。這可以在圖8中觀察到,在帶有*符號的曲線圖中突出顯示,其中蛋白質峰值出現在摩擦系數小的情況下。圖8。激光誘導熒光是在PDSM盤上加載二氧化硅半球并用FITC染色唾液潤滑的滑動試驗的結果。a) 空載接觸的強度圖,b)至d)滑動過程中的強度圖,e)摩擦系數(藍色)和熒光信號(橙色)的變化,通過計算強度大于試驗平均值的像素數獲得。為了突出相關性,示例峰值用ˆ標記,示例波谷用v標記。400 s左右的箭頭突出顯示兩個信號中的對稱趨勢。注:在5和440s觀察到的熒光階躍變化對應于在接觸的加載和卸載過程中接觸蛋白的增加和減少。(為了解釋本圖圖例中對顏色的引用,請參閱本文的網絡版本。)G.Carpenter等人。食品類親水膠體92(2019)10–18 16唾液與水相比的潤滑特性差異被認為與唾液蛋白質如粘蛋白和statherin有關。粘蛋白有助于唾液的粘度,這可能有助于流體動力潤滑模式(Bongaerts等人,2007),而statherin,一種小的表面活性蛋白被視為邊界潤滑劑(Douglas等人)(Harvey,Carpenter,Proctor和Klein,2011),雖然*有可能其他蛋白質也有助于潤滑性能。5個。結論從表面化學的角度來看,PDMS適合于復制口腔粘膜,因為它和舌頭一樣,是疏水的(Dresselhuis,2008)及其帶電基團,吸引蛋白質(Phillips&Cheng,2005)。這導致PMDS顯示出與生物樣品相似的摩擦與速度趨勢。另一方面,當唾液和水潤滑時,瓊脂糖在摩擦力上的差別很小。這是由于水合瓊脂糖表面弱粘附唾液蛋白所致。瓊脂糖經粘膠組分增強粘蛋白結合后,其摩擦性能沒有改善。雖然PDMS橡膠具有與舌頭相似的疏水性質,但PDMS的彈性模量要大兩個數量級。此外,即使交聯度受到限制,PDMS的模量也僅降至約570千帕(Wang等人,2014年),而舌頭的模量為3.4千帕。這是一個明顯的缺點,因為樣品的剛度同時影響邊界摩擦(μαE′-2/3(Schallamach,1958))和彈性流體動力膜厚度(hαE′0.66(de Vicente等人,2005))。被測樣本之間的粗糙度也有相當大的差異,瓊脂糖與舌頭 匹配。然而,由于較粗糙材料的非接觸壓扁,這對摩擦的影響是有限的,因為較粗糙材料具有較低的剛度。PDMS的一個優點是它是透明的,可以對唾液潤滑機制進行接觸成像。利用激光誘導熒光證實了這一點,由此產生的摩擦和蛋白質強度信號之間的強相關性(0.87)證實了唾液蛋白質的lubricous邊界膜形成能力。蛋白質聚集在本質上是高度短暫的。應用這項技術來研究唾液與食品和飲料之間的摩擦學相互作用,以科學地描述口感特性是正在進行的研究課題。致謝S.K.Baier和R.V.Potineni受雇于百事公司。本研究文章中表達的觀點是作者的觀點,并不一定反映百事公司的立場或政策。本研究由百事公司資助(批準號:P55310-1)。附錄A.補充數據本文的補充數據可在01.049在線查詢。附錄。表面形貌測量圖A1。三種材料的表面形貌,使用Veeco光學輪廓儀測量,a)豬舌,b)PDMS,c)農酶。參考文獻:Adams,M.J.,Briscoe,B.J.,和Johnson,S.a.(2007)。人體皮膚的摩擦和潤滑。摩擦學快報,26(3),239-253。Akhtar,R.,Sherratt,M.J.,Cruickshank,J.K.和Derby,B.(2011年)。描述組織彈性特性的。材料今天,14(3),96-105。Barquins,M.和Roberts,A.D.(2000年)。橡膠摩擦隨速率和溫度的變化:一些新的觀察結果。物理與應用物理學雜志,19(4),547-563。Benkherourou,M.,Rochas,C.,Tracqui,P.,Tranqui,L.和Guméry,P.Y.(1999年)。低濃度生物制劑表征方法的標準化:低濃度瓊脂糖凝膠的彈性特性。生物力學工程雜志,121(2),184-187。Bongaerts,J.H.H.,Fourtouni,K.,和Stokes,J.R.(2007年)。軟摩擦學:在一個兼容的PDMS-PDMS接觸潤滑。摩擦學,40(10-12),1531-1542規范。Chen,J.和Stokes,J.R.(2012年)。流變學和摩擦學:食物質感的兩種不同狀態。食品科學與技術趨勢,25(1),4-12。Chen,Q.,Suki,B.,&An,K.-N.(2004年)。用分數階導數模型模擬瓊脂糖凝膠的動態力學性質。生物力學工程雜志,126(5),666-671。Corfield,A.P.(2015年)。粘蛋白:粘膜保護中與生物學相關的聚糖屏障。生物化學與生物物理學學報(BBA)-普通學科,1850(1),236–252。Cox,M.A.J.,Driessen,N.J.B.,Boerboom,R.A.,Bouten,C.V.C.和Baaijens,F.P.T.(2008年)。有限壓痕法研究各向異性平面生物軟組織的力學特性:實驗可行性。生物力學雜志,41(2),422-429。Davies,G.A.,Wannilling,E.,和Stokes,J.R.(2009年)。飲料對唾液刺激和粘彈性的影響:與口感的關系?食品水膠體,23(8),2261-2269。De Vicente,J.,Spikes,H.A.和Stokes,J.R.(2004年)。軟表面間潤滑薄膜中的復雜流體。1到4。van Dommelen,J.A.W.,van der Sande,T.P.J.,Hrapko,M.和Peters,G.W.M.(2010年)。腦組織壓痕力學特性:區域間差異。生物醫學材料力學行為雜志,3(2),158-166。W、 H.Douglas,E.S.Reeh,N.Ramasubbu,P.A.Raj,K.K.Bhandary和M.J.Levine,“Statherin:人類唾液的主要邊界潤滑劑”,生物化學和生物物理研究通訊,第180卷,第91-97頁。Dresselhuis,D.M.(2008年)。脂肪的命運:食品乳劑的摩擦學、粘附性和脂肪感覺。瓦赫寧根大學。Dresselhuis,D.M.,Klok,H.J.,Stuart,M.A.C.,De Vries,R.J.,Van Aken,G.A.,和De Hoog,E.H.A.(2007年)。o/w乳液在類口條件下的摩擦學:摩擦的決定因素。食品生物物理學,2(4),158-171。Drewnowski,A.(1997年)。為什么我們喜歡脂肪?美國飲食協會雜志,97(7),S58–S62。Eddings,M.A.,Johnson,M.A.,和Gale,B.K.(2008年)。確定微流控器件的 PDMS-PDMS鍵合技術。微機械與微工程學報,18(6),067001。Fan,J.,Myant,C.W.,Underwood,R.,Cann,P.M.和Hart,A.(2011年)。入口蛋白聚集:模型滑液潤滑成膜的新機制。機械工程師學會論文集,H部分:G.Carpenter等人期刊。食品水膠體92(2019)10–18 17醫學工程,225(7),696–709。費爾南德斯·法雷斯,I.和諾頓,I.T.(2015)。共溶質對瓊脂凝膠摩擦學性能的影響。食品水膠體,45186195。Gibbins,H.L.,Proctor,G.B.,Yakubov,G.E.,Wilson,S.,和Carpenter,G.H.(2014年)。結合口腔粘膜膜內唾液保護蛋白的濃度。口腔疾病,20(7),707–713。Harvey,N.M.,Carpenter,G.H.,Proctor,G.B.,和Klein,J.(2011)。純化人statherin吸附在光滑固體基質上的正常和摩擦相互作用。生物污染,27(8),823-835。Hayes,W.C.,Keer,L.M.,Herrmann,G.,和Mockros,L.F.(1972)。關節軟骨壓痕試驗的數學分析。生物力學雜志,5(5),541-551。Hillborg,H.和Gedde,U.W.(1998年)。聚二甲基硅氧烷在電暈放電后的疏水性恢復。聚合物,39(10),1991-1998。Hillborg,H.,Sandelin,M.,和Gedde,U.W.(2001)。聚二甲基硅氧烷局部放電后的疏水性恢復與交聯密度的關系。聚合物,42(17),7349–7362。Khanafer,K.,Duprey,A.,Schlicht,M.,和Berguer,R.(2009年)。應變率、混合比和應力-應變定義對聚二甲基硅氧烷(PDMS)材料力學行為與其生物應用的影響。生物醫學。微型設備,11(2),503–508。Lee,S.和Spencer,N.D.(2005年)。聚合物的水潤滑:表面改性的影響。摩擦學,38(11-12),922-930規格。Lótters,J.C.,Olthuis,W.,Veltink,P.H.,和Bergveld,P.(1999)。傳感器用橡膠彈性聚合物聚二甲基硅氧烷的機械性能。微機械與微工程學報,7(3),145–147。Malone,M.E.,Appelqvist,I.A.M.,和Norton,I.T.(2003)。食品水膠體和乳狀液的口服行為。 部分。潤滑和沉積注意事項。食品水膠體,17(6),763-773。McKee,C.T.,Last,J.A.,Ph,D.,Russell,P.,Ph,D.,Murphy,C.J.,等人。(2011年)。軟生物組織楊氏模量的壓痕與拉伸測量。組織工程B部分綜述,17(3),155-164。Muthupillai,R.,Lomas,D.,Rossman,P.,Greenleaf,J.,Manduca,A.,和Ehman,R.(1995)。聲應變波傳播的直接可視化磁共振彈性成像。科學(80),269(5232),1854-1857。Myant,C.,Reddyhoff,T.,和Spikes,H.A.(2010年)。純滑動潤滑柔順接觸中薄膜厚度映射的激光誘導熒光法。摩擦學,43(11),1960-1969。諾曼,V.,洛滕斯,D.L.,阿米奇,E.,普拉克內特,K.P.和艾馬爾德,P.(2000)。瓊脂糖凝膠力學性質的新認識。生物大分子,1730-738。Phillips,K.S.和Cheng,Q.(2005)。聚二甲基硅氧烷負載磷脂雙層膜細菌毒素的微流控免疫分析分析化學,77(1),327–334。Prinz,J.F.,de Wijk,R.A.,和Huntjens,L.(2007年)。口腔粘膜摩擦系數的負荷依賴性。食品親水膠體,21(3),402–408。Rantonen,P.J.F.和Meurman,J.H.(1998年)。整個唾液的粘度。斯堪的納維亞齒科學報,56(4),210-214。Reddyhoff,T.,Choo,J.H.,Spikes,H.A.,和Glovnea,R.P.(2010年)。用熒光法研究彈流接觸中的潤滑油流動。摩擦學快報,38(3),207-215。Saris,D.B.,Mukherjee,N.,Berglund,L.J.,Schultz,F.M.,An,K.N.,和O'Driscoll,S.W.(2000年)。瓊脂糖凝膠的動態壓力傳遞。組織工程,6(5),531-537。Schallamach,A.(1958年)。橡膠的摩擦和磨損。磨損,1(5),384–417。Schneemilch,M.和Quirke,N.(2007年)。氧化對聚二甲基硅氧烷表面潤濕性的影響《化學物理學雜志》,127(11)。Shewan,H.M.和Stokes,J.R.(2015年)。軟球形微水凝膠懸浮液的粘度。膠體與界面科學雜志,4427581。Stokes,J.R.,Boehm,M.W.和Baier,S.K.(2013年)。口腔加工、質地和口感:從流變學到摩擦學及其他。膠體與界面科學的 觀點,18(4),349–359。Stokes,J.R.,Bongaerts,J.H.H.,和Rossetti,D.(2007年)。人全唾液的潤滑特性。摩擦學快報,277-287。Tang,W.和Bhushan,B.(2010年)。原子力顯微鏡對皮膚和護膚霜的粘附、摩擦和磨損特性的研究。膠體和表面B:生物界面,76(1),1-15。Tang,W.,Bhushan,B.,和Ge,S.(2010年)。利用原子力顯微鏡研究摩擦、附著力和耐久性以及濕度對皮膚和各種護膚霜附著力和表面電荷的影響。顯微鏡雜志,239(2),99-116。de Vicente,J.,Stokes,J.R.,&a Spikes,H.(2006年)。在柔順、潤滑的接觸中滾動和滑動摩擦。機械工程師學會論文集第J部分。220(2),55–63。de Vicente,J.,Stokes,J.R.和Spikes,H.A.(2005年)。非吸附聚合物溶液在軟彈流接觸中的潤滑特性。摩擦學,38(5),515–526。Vijay,A.,Inui,T.,Dodds,M.,Proctor,G.,和Carpenter,G.(2015年)。影響唾液拉伸流變特性的因素。公共科學圖書館一號,10(8),1-11。Vorvolakos,K.和Chaudhury,M.K.(2003年)。分子量和溫度對硅橡膠動摩擦性能的影響。蘭繆爾,19(17),6778-6787。Wang,Z.,Volinsky,A.A.和Gallant,N.D.(2014年)。自制壓縮儀測定交聯對聚二甲基硅氧烷彈性模量的影響。應用高分子科學雜志,131(22),1-4。