電弧等離子體沉積系統
日本ADVANCE RIKO公司致力于電弧等離子體沉積系統(APD)用脈沖電弧放電將電導材料離子化,產生高能離子并沉積在基底上,制備納米薄膜鍍層或納米顆粒。
用通過控制脈沖能量,可以在1.5nm到6nm范圍內控制納米顆粒直徑,活性好,產量高。多種靶材同時制備可生成新化合物。金屬/半導體制備同時控制腔體氣氛,可以產生氧化物和氮化物薄膜。高能量等離子體可以沉積碳和相關單質體如非晶碳,納米鉆石,碳納米管 形成新的納米顆粒催化劑。
主要應用域
- 制備新金屬化合物,或制備氧化物和氮化物薄膜(氧氣和氮氣氛圍)
- 制備非晶碳,納米鉆石以及碳納米管的納米顆粒
- 形成新的納米顆粒催化劑(廢氣催化劑,揮發性有機化合物分解催化劑,光催化劑,燃料電池電催化劑,制氫催化劑)
- 用熱電材料靶材制備熱電效應薄膜
技術原理
- 在觸發電上加載高電壓后,電容中的電荷充到陰(靶材)上。
- 真空中的陽和陰(靶材)間,電子形成了蠕緩放電,并產生放電回路,靶材被加熱并形成等離子體。
- 通過磁場控制等離子體照射到基底上,形成薄膜或納米顆粒。
|
|
適用性
APD適用于元素周期表中大部分高導電性金屬,合金以及半導體。所用原料為直徑10mmX17mm長圓柱體或管狀體,且電阻率小于0.01 ohm.cm。下面的元素周期表顯示了可制備的材料,綠色代表*適用,黃色代表在定條件下適用。
產品點
1. 系統可以通過調節放電電容選擇納米顆粒直徑在1.5nm到6nm范圍內。
2. 只要靶材是導電材料,系統就可以將其等離子體化。(電阻率小于0.01ohm.cm)
3. 改變系統的氣氛氛圍,可以制備氧化物或氮化物。石墨在氫氣中放電能產生超納米微晶鉆石。
4. 用該系統制備的活性催化劑效果于濕法制備。
5. Model APD-P支持將納米顆粒做成粉末。Model APD-S適合在2英寸基片上制備均勻薄膜。
|
APD制備的Fe-Co納米顆粒的SEM和EDS圖譜
|
系統參數
1. 真空腔尺寸:400X400X300長寬高
APD-P 粉末容器:直徑95mm 高30mm
|
|
|
產品對比
測試數據
■ 用APD制備氧化鐵納米顆粒
圖1 三種不同碳基支撐物表面獲得的氧化鐵顆粒的HAADF-STEM圖像及粒徑分布統計圖
表1 鐵負載量、納米顆粒粒徑與電弧脈沖次數的關系
引用資料:Yumi Ida, et al. A useful preparation of ultrasmall iron oxide particles by using arc plasma deposition. RSC Adv., 2020, 10, 41523.
■ 用APD制備Fe-Co納米顆粒
APD制備的Fe-Co納米顆粒的SEM和EDS圖譜
部分用戶發表文獻
2021
1. Kamal Prasad Sharma, Aliza Khaniya Sharma, Toru Asaka, Takahiro Maruyama. Transmissible Plasma-Evolved Suspended Graphene for TEM Observation Window. ACS Appl. Nano Mater. 2021, XXXX, XXX, XXX-XXX.
2. Ai Misaki, Takahiro Saida, Shigeya Naritsuka, Takahiro Maruyama. Effect of growth temperature and ethanol flow rate on synthesis of single-walled carbon nanotube by alcohol catalytic chemical vapor deposition using Ir catalyst in hot-wall reactor. Jpn. J. Appl. Phys., 2021, 60, 015003.
2020
1. Yumi Ida, Atsushi Okazawa, Kazutaka Sonobe, Hisanori Muramatsu, Tetsuya Kambe, Takane Imaoka, Wang-Jae Chun, Makoto Tanabe, Kimihisa Yamamoto. A useful preparation of ultrasmall iron oxide particles by using arc plasma deposition. RSC Adv., 2020, 10, 41523.
2. K Miyazawa, T Nagai, K Kimoto, M Yoshitake, Y. Tanaka. HRTEM-EELS cross-sectional characterization of HOPG substrate with platinum nanoparticles deposited using a coaxial arc plasma gun. Diam. Relat. Mater., 2020, 101, 107623.
3. Xiao Zhao, Yutaka Hamamura, Yusuke Yoshida, Takuma Kaneko, Takao Gunji, Shinobu Takao, Kotaro Higashi, Tomoya Uruga, Yasuhiro Iwasawa. Plasma-Devised Pt/C Model Electrodes for Understanding the Doubly Beneficial Roles of a Nanoneedle-Carbon Morphology and Strong Pt-Carbon Interface in the Oxygen Reduction Reaction. ACS Appl. Energy Mater. 2020, 3, 6, 5542–5551.
4. Naoto Todoroki, Shuntaro Takahashi, Kotaro Kawaguchi, Yusuke Fugane, Toshimasa Wadayama, Dry synthesis of single-nanometer-scale Ptsingle bondSi fine particles for electrocatalysis. J. Electroanal. Chem., 2020, 876, 114492.
5. Hiroshi Yoshida, Yusuke Kuzuhara, Tomoyo Koide, Junya Ohyama, Masato Machida. Pt-modified nanometric Rh overlayer as an efficient three-way catalyst under lean conditions. Catal. Today, (On line, in press).
6. Takahiro Maruyama, Takuya Okada, Kamal Prasad Sharma, Tomoko Suzuki, Takahiro Saida, Shigeya Naritsuka, Yoko Iizumi, Toshiya Okazaki, Sumi Iijima. Vertically aligned growth of small-diameter single-walled carbon nanotubes by alcohol catalytic chemical vapor deposition with Ir catalyst. Appl. Surf. Sci., 2020, 509, 145340.
7. Teppei Ikehara, Zhiyun Noda, Junko Matsuda, Masamichi Nishihara, Akari Hayashi, Kazunari Sasaki. Porous Metal Support for Gas Diffusion Electrode of PEFCs. ECS Trans., 2020, 98, 573.
8. D. Kawachino, M. Yasutake, Z. Noda, J. Matsuda, S. M. Lyth, A. Hayashi, K. Sasaki. Surface-Modified Titanium Fibers as Durable Carbon-Free Platinum Catalyst Supports for Polymer Electrolyte Fuel Cells. J. Electrochem. Soc., 2020, 167, 104513.
9. Masahiro Yasutake, Daiki Kawachino, Zhiyun Noda, Junko Matsuda, Stephen M. Lyth, Kohei Ito, Akari Hayashi, Kazunari Sasaki. Catalyst-Integrated Gas Diffusion Electrodes for Polymer Electrolyte Membrane Water Electrolysis: Porous Titanium Sheets with Nanostructured TiO2 Surfaces Decorated with Ir Electrocatalysts. J. Electrochem. Soc., 2020, 167, 124523.
用戶單位
北海道大學
日本產業技術綜合研究所
東北大學(Tohoku University)
韓國科學技術研究院
九州大學
京都大學
大阪大學
山梨大學
東京理科大學
東京工業大學