電子顯微鏡技術的應用是建立在光學顯微鏡的基礎之上的,光學顯微鏡的分辨率為0.2μm,透射電子顯微鏡的分辨率為0.2nm,也就是說透射電子顯微鏡在光學顯微鏡的基礎上放大了1000倍。
掃描電子顯微鏡的優點介紹
掃描電子顯微鏡的電子束不穿過樣品,僅以電子束盡量聚焦在樣本的一小塊地方,然后一行一行地掃描樣本。入射的電子導致樣本表面被激發出次級電子。顯微鏡觀察的是這些每個點散射出來的電子,放在樣品旁的閃爍晶體接收這些次級電子,通過放大后調制顯像管的電子束強度,從而改變顯像管熒光屏上的亮度。圖像為立體形象,反映了標本的表面結構。顯像管的偏轉線圈與樣品表面上的電子束保持同步掃描,這樣顯像管的熒光屏就顯示出樣品表面的形貌圖像,這與工業電視機的工作原理相類似。由于這樣的顯微鏡中電子不必透射樣本,因此其電子加速的電壓不必非常高。
掃描式電子顯微鏡的分辨率主要決定于樣品表面上電子束的直徑。放大倍數是顯像管上掃描幅度與樣品上掃描幅度之比,可從幾十倍連續地變化到幾十萬倍。掃描式電子顯微鏡不需要很薄的樣品;圖像有很強的立體感;能利用電子束與物質相互作用而產生的次級電子、吸收電子和X射線等信息分析物質成分。
掃描電子顯微鏡的制造是依據電子與物質的相互作用。當一束高能的入射電子轟擊物質表面時,被激發的區域將產生二次電子、俄歇電子、特征x射線和連續譜X射線、背散射電子、透射電子,以及在可見、紫外、紅外光區域產生的電磁輻射。同時,也可產生電子-空穴對、晶格振動(聲子)、電子振蕩(等離子體)。